BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36739625)

  • 1. NCCT-CECT image synthesizers and their application to pulmonary vessel segmentation.
    Pang H; Qi S; Wu Y; Wang M; Li C; Sun Y; Qian W; Tang G; Xu J; Liang Z; Chen R
    Comput Methods Programs Biomed; 2023 Apr; 231():107389. PubMed ID: 36739625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep anatomy learning for lung airway and artery-vein modeling with contrast-enhanced CT synthesis.
    Zhang H; Zhang M; Gu Y; Yang GZ
    Int J Comput Assist Radiol Surg; 2023 Jul; 18(7):1287-1294. PubMed ID: 37259009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images.
    Liu H; Zhou Y; Gou S; Luo Z
    Comput Biol Med; 2024 May; 174():108420. PubMed ID: 38613896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating synthetic contrast enhancement from non-contrast chest computed tomography using a generative adversarial network.
    Choi JW; Cho YJ; Ha JY; Lee SB; Lee S; Choi YH; Cheon JE; Kim WS
    Sci Rep; 2021 Oct; 11(1):20403. PubMed ID: 34650076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. United multi-task learning for abdominal contrast-enhanced CT synthesis through joint deformable registration.
    Zhong L; Huang P; Shu H; Li Y; Zhang Y; Feng Q; Wu Y; Yang W
    Comput Methods Programs Biomed; 2023 Apr; 231():107391. PubMed ID: 36804266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image synthesis of monoenergetic CT image in dual-energy CT using kilovoltage CT with deep convolutional generative adversarial networks.
    Kawahara D; Ozawa S; Kimura T; Nagata Y
    J Appl Clin Med Phys; 2021 Apr; 22(4):184-192. PubMed ID: 33599386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT.
    Kawahara D; Saito A; Ozawa S; Nagata Y
    Comput Biol Med; 2021 Jan; 128():104111. PubMed ID: 33279790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of megavoltage computed tomography image quality for adaptive helical tomotherapy using cycleGAN-based image synthesis with small datasets.
    Lee D; Jeong SW; Kim SJ; Cho H; Park W; Han Y
    Med Phys; 2021 Oct; 48(10):5593-5610. PubMed ID: 34418109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the effect of training database size for MR-based synthetic CT generation in the head.
    Estakhraji SIZ; Pirasteh A; Bradshaw T; McMillan A
    Comput Med Imaging Graph; 2023 Jul; 107():102227. PubMed ID: 37167815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prostate segmentation accuracy using synthetic MRI for high-dose-rate prostate brachytherapy treatment planning.
    Kang H; Podgorsak AR; Venkatesulu BP; Saripalli AL; Chou B; Solanki AA; Harkenrider M; Shea S; Roeske JC; Abuhamad M
    Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37433302
    [No Abstract]   [Full Text] [Related]  

  • 13. A conventional-to-spectral CT image translation augmentation workflow for robust contrast injection-independent organ segmentation.
    Lartaud PJ; Dupont C; Hallé D; Schleef A; Dessouky R; Vlachomitrou AS; Rouet JM; Nempont O; Boussel L
    Med Phys; 2022 Feb; 49(2):1108-1122. PubMed ID: 34689353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cycle generative adversarial network for generating synthetic contrast-enhanced computed tomographic images from non-contrast images in the internal jugular lymph node-bearing area.
    Fukuda M; Kotaki S; Nozawa M; Kuwada C; Kise Y; Ariji E; Ariji Y
    Odontology; 2024 Apr; ():. PubMed ID: 38607582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation and suppression of pulmonary vessels in low-dose chest CT scans.
    Gu X; Wang J; Zhao J; Li Q
    Med Phys; 2019 Aug; 46(8):3603-3614. PubMed ID: 31240721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy.
    Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X
    Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep-learning method for generating synthetic kV-CT and improving tumor segmentation for helical tomotherapy of nasopharyngeal carcinoma.
    Chen X; Yang B; Li J; Zhu J; Ma X; Chen D; Hu Z; Men K; Dai J
    Phys Med Biol; 2021 Nov; 66(22):. PubMed ID: 34700300
    [No Abstract]   [Full Text] [Related]  

  • 19. A deep learning approach to remove contrast from contrast-enhanced CT for proton dose calculation.
    Wang X; Hao Y; Duan Y; Yang D
    J Appl Clin Med Phys; 2024 Feb; 25(2):e14266. PubMed ID: 38269961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image synthesis of effective atomic number images using a deep convolutional neural network-based generative adversarial network.
    Kawahara D; Ozawa S; Saito A; Nagata Y
    Rep Pract Oncol Radiother; 2022; 27(5):848-855. PubMed ID: 36523807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.