These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36739656)

  • 1. Rapid and Direct Liquid-Phase Synthesis of Luminescent Metal Halide Superlattices.
    Le TH; Noh S; Lee H; Lee J; Kim M; Kim C; Yoon H
    Adv Mater; 2023 Apr; 35(17):e2210749. PubMed ID: 36739656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perovskite-type superlattices from lead halide perovskite nanocubes.
    Cherniukh I; Rainò G; Stöferle T; Burian M; Travesset A; Naumenko D; Amenitsch H; Erni R; Mahrt RF; Bodnarchuk MI; Kovalenko MV
    Nature; 2021 May; 593(7860):535-542. PubMed ID: 34040208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Halide Perovskite Nanocrystal Superlattice: Self-Assembly and Optical Fingerprints.
    Liu Z; Qin X; Chen Q; Jiang T; Chen Q; Liu X
    Adv Mater; 2023 Apr; 35(16):e2209279. PubMed ID: 36738101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipole-dipole interactions in nanoparticle superlattices.
    Talapin DV; Shevchenko EV; Murray CB; Titov AV; Kral P
    Nano Lett; 2007 May; 7(5):1213-9. PubMed ID: 17397231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered structure rearrangements in heated gold nanocrystal superlattices.
    Goodfellow BW; Rasch MR; Hessel CM; Patel RN; Smilgies DM; Korgel BA
    Nano Lett; 2013; 13(11):5710-4. PubMed ID: 24131332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice.
    Zhuang Z; Peng Q; Zhang B; Li Y
    J Am Chem Soc; 2008 Aug; 130(32):10482-3. PubMed ID: 18636712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy landscape of self-assembled superlattices of PbSe nanocrystals.
    Quan Z; Wu D; Zhu J; Evers WH; Boncella JM; Siebbeles LD; Wang Z; Navrotsky A; Xu H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9054-7. PubMed ID: 24927573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal nanocrystal superlattice nucleation and growth.
    Sigman MB; Saunders AE; Korgel BA
    Langmuir; 2004 Feb; 20(3):978-83. PubMed ID: 15773133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic Cracking of Nanocrystal Superlattices.
    Diroll BT; Ma X; Wu Y; Murray CB
    Nano Lett; 2017 Oct; 17(10):6501-6506. PubMed ID: 28921994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supra- and nanocrystallinities: a new scientific adventure.
    Pileni MP
    J Phys Condens Matter; 2011 Dec; 23(50):503102. PubMed ID: 22121205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Synthesis of Stable and Highly Luminescent Methylammonium Lead Halide Nanocrystals for Efficient Light Emitting Devices.
    Hassan Y; Ashton OJ; Park JH; Li G; Sakai N; Wenger B; Haghighirad AA; Noel NK; Song MH; Lee BR; Friend RH; Snaith HJ
    J Am Chem Soc; 2019 Jan; 141(3):1269-1279. PubMed ID: 30605603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies.
    Song Q; Ding Y; Wang ZL; Zhang ZJ
    J Phys Chem B; 2006 Dec; 110(50):25547-50. PubMed ID: 17166006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices.
    Choi JJ; Bian K; Baumgardner WJ; Smilgies DM; Hanrath T
    Nano Lett; 2012 Sep; 12(9):4791-8. PubMed ID: 22888985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous Self-Assembly of Perovskite Nanocrystals into Electronically Coupled Supercrystals: Toward Filling the Green Gap.
    Tong Y; Yao EP; Manzi A; Bladt E; Wang K; Döblinger M; Bals S; Müller-Buschbaum P; Urban AS; Polavarapu L; Feldmann J
    Adv Mater; 2018 Jun; ():e1801117. PubMed ID: 29870579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.