These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36739773)

  • 1. A river basin spatial model to quantitively advance understanding of riverine tree response dynamics to water availability and hydrological management.
    Doody TM; Gao S; Vervoort W; Pritchard J; Davies M; Nolan M; Nagler PL
    J Environ Manage; 2023 Apr; 332():117393. PubMed ID: 36739773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Spatial and Temporal Changes of NDVI and Its Driving Factors in the Wei and Jing River Basins.
    Huang C; Yang Q; Huang W
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continental impacts of water development on waterbirds, contrasting two Australian river basins: Global implications for sustainable water use.
    Kingsford RT; Bino G; Porter JL
    Glob Chang Biol; 2017 Nov; 23(11):4958-4969. PubMed ID: 28578561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate phase drives canopy condition in a large semi-arid floodplain forest.
    Wen L; Saintilan N
    J Environ Manage; 2015 Aug; 159():279-287. PubMed ID: 26027753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrological responses to land degradation in the Northwest Benin Owena River Basin, Nigeria.
    Aladejana OO; Salami AT; Adetoro OO
    J Environ Manage; 2018 Nov; 225():300-312. PubMed ID: 30098496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal variations in evapotranspiration and its influencing factors in the semiarid Hailar river basin, Northern China.
    Wang L; Wang G; Xue B; A Y; Fang Q; Shrestha S
    Environ Res; 2022 Sep; 212(Pt B):113275. PubMed ID: 35436449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning based estimation of field-scale daily, high resolution, multi-depth soil moisture for the Western and Midwestern United States.
    Xia Y; Watts JD; Machmuller MB; Sanderman J
    PeerJ; 2022; 10():e14275. PubMed ID: 36353602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interannual variation in riparian vegetation cover and its relationship with river flow under a high level of human intervention: an example from the Yongding River Basin.
    Ren L; Zhang S; Guo X; Cheng L; Guo Y; Ding A
    Environ Monit Assess; 2021 Jun; 193(7):406. PubMed ID: 34110515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental flows and water quality objectives for the River Murray.
    Gippel C; Jacobs T; McLeod T
    Water Sci Technol; 2002; 45(11):251-60. PubMed ID: 12171360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins.
    He Q; Fok HS; Chen Q; Chun KP
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing river disruption factors and ecological flow in China's Liu River Basin amid environmental changes.
    Li M; Wang H; Gu H; Chi B
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):26282-26299. PubMed ID: 38499930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Downscaling and validating SMAP soil moisture using a machine learning algorithm over the Awash River basin, Ethiopia.
    Sishah S; Abrahem T; Azene G; Dessalew A; Hundera H
    PLoS One; 2023; 18(1):e0279895. PubMed ID: 36638093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for monitoring environmental flows with high spatial and temporal resolution satellite data.
    Lu Y; Wu B; Yan N; Zeng H; Guo Y; Zhu W; Zhang H
    Environ Monit Assess; 2021 Dec; 194(1):13. PubMed ID: 34877616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of climate change effects on vegetation and river hydrology in a semi-arid river basin.
    Ougahi JH; E J Cutler M; J Cook S
    PLoS One; 2022; 17(8):e0271991. PubMed ID: 36037176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of contemporary changes in climate and land use/cover on tendencies in water flow, suspended sediment yield and erosion intensity in the northeastern part of the Don River basin, SW European Russia.
    Gusarov AV
    Environ Res; 2019 Aug; 175():468-488. PubMed ID: 31158565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the snow cover dynamics and its relationship with different hydro-climatic characteristics in Upper Ganges river basin and its sub-basins.
    Thapa S; Zhang F; Zhang H; Zeng C; Wang L; Xu CY; Thapa A; Nepal S
    Sci Total Environ; 2021 Nov; 793():148648. PubMed ID: 34351296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: The collateral effects of hydropower production.
    Resende AF; Schöngart J; Streher AS; Ferreira-Ferreira J; Piedade MTF; Silva TSF
    Sci Total Environ; 2019 Apr; 659():587-598. PubMed ID: 31096388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating the hydrological regime of the snow fed and glaciarised Gilgit Basin in the Upper Indus using global precipitation products and a data parsimonious precipitation-runoff model.
    Nazeer A; Maskey S; Skaugen T; McClain ME
    Sci Total Environ; 2022 Jan; 802():149872. PubMed ID: 34461480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin.
    Jiang ZY; Yang ZG; Zhang SY; Liao CM; Hu ZM; Cao RC; Wu HW
    J Environ Manage; 2020 May; 262():110310. PubMed ID: 32250793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water resources management of large hydrological basins in semi-arid regions: Spatial and temporal variability of water footprint of the Upper Euphrates River basin.
    Muratoglu A; Iraz E; Ercin E
    Sci Total Environ; 2022 Nov; 846():157396. PubMed ID: 35850329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.