BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 36739780)

  • 1. A passive upper-limb exoskeleton reduced muscular loading during augmented reality interactions.
    Kong YK; Park SS; Shim JW; Choi KH; Shim HH; Kia K; Kim JH
    Appl Ergon; 2023 May; 109():103982. PubMed ID: 36739780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of an exoskeleton on muscle activity in tasks requiring arm elevation: Part I - Experiments in a controlled laboratory setting.
    Mänttäri S; Rauttola AP; Halonen J; Karkulehto J; Säynäjäkangas P; Oksa J
    Work; 2024; 77(4):1179-1188. PubMed ID: 37980590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical Effects of Using a Passive Exoskeleton for the Upper Limb in Industrial Manufacturing Activities: A Pilot Study.
    Coccia A; Capodaglio EM; Amitrano F; Gabba V; Panigazzi M; Pagano G; D'Addio G
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support.
    van Sluijs R; Scholtysik T; Brunner A; Kuoni L; Bee D; Kos M; Bartenbach V; Lambercy O
    Appl Ergon; 2024 Jun; 120():104332. PubMed ID: 38876001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a passive arm-support exoskeleton for surgical team members: Results from live surgeries.
    Cha JS; Athanasiadis DI; Asadi H; Stefanidis D; Nussbaum MA; Yu D
    J Safety Res; 2024 Jun; 89():322-330. PubMed ID: 38858056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of passive shoulder exoskeleton support during working with arms over shoulder level.
    Brunner A; van Sluijs R; Luder T; Camichel C; Kos M; Bee D; Bartenbach V; Lambercy O
    Wearable Technol; 2023; 4():e26. PubMed ID: 38510589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Upper Limb Exoskeleton Motion Generation Algorithm Based on Separating Shoulder and Arm Motion.
    Wang J; Pei S; Guo J; Dong A; Liu B; Yao Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1142-1153. PubMed ID: 38252574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers.
    Schrøder Jakobsen L; Samani A; Desbrosses K; de Zee M; Madeleine P
    IISE Trans Occup Ergon Hum Factors; 2024 Jun; ():1-13. PubMed ID: 38869954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different computer tasks affect the exposure of the upper extremity to biomechanical risk factors.
    Dennerlein JT; Johnson PW
    Ergonomics; 2006 Jan; 49(1):45-61. PubMed ID: 16393803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shoulder kinematics and spatial pattern of trapezius electromyographic activity in real and virtual environments.
    Samani A; Pontonnier C; Dumont G; Madeleine P
    PLoS One; 2015; 10(3):e0116211. PubMed ID: 25768123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of upper-limb exoskeleton on muscle activity in tasks requiring arm elevation: Part II - In-field experiments in construction industry settings.
    Mänttäri S; Rauttola AP; Halonen J; Karkulehto J; Säynäjäkangas P; Oksa J
    Work; 2024 Apr; ():. PubMed ID: 38578911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of an upper limb exoskeleton on gait performance and stability.
    Tounekti Y; Cocquerz T; Ben Mansour K
    J Biomech; 2024 May; 169():112072. PubMed ID: 38723414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of exoskeleton use on human response to simulated overhead tasks with vibration.
    Xia T; Torkinejad-Ziarati P; Kudernatsch S; Peterson DR
    Ergonomics; 2024 Jul; ():1-14. PubMed ID: 38963600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effects of Upper-Body Exoskeletons on Human Metabolic Cost and Thermal Response during Work Tasks-A Systematic Review.
    Del Ferraro S; Falcone T; Ranavolo A; Molinaro V
    Int J Environ Res Public Health; 2020 Oct; 17(20):. PubMed ID: 33050273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of an active and passive industrial back exoskeleton on functional performance.
    Govaerts R; De Bock S; Provyn S; Vanderborght B; Roelands B; Meeusen R; De Pauw K
    Ergonomics; 2024 May; 67(5):597-618. PubMed ID: 37480301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Passive Shoulder Exoskeleton Using Link Chains and Magnetic Spring Joints.
    Lee HH; Yoon KT; Lim HH; Lee WK; Jung JH; Kim SB; Choi YM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():708-717. PubMed ID: 38285587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a machine-learning-driven active-passive upper-limb exoskeleton robot: Experimental human-in-the-loop study.
    Nasr A; Hunter J; Dickerson CR; McPhee J
    Wearable Technol; 2023; 4():e13. PubMed ID: 38487766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams.
    Näf MB; Koopman AS; Baltrusch S; Rodriguez-Guerrero C; Vanderborght B; Lefeber D
    Front Robot AI; 2018; 5():72. PubMed ID: 33500951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergonomic evaluation of upper extremities muscle activity pattern during 60-min smartphone texting.
    Dandumahanti BP; Subramaniyam M
    Work; 2024; 78(2):477-488. PubMed ID: 38143412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.