BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36739780)

  • 21. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort.
    Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B
    Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of error rates and target sizes on neck and shoulder biomechanical loads during augmented reality interactions.
    Kia K; Hwang J; Kim JH
    Appl Ergon; 2023 Nov; 113():104107. PubMed ID: 37523813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System.
    Kong YK; Choi KH; Cho MU; Kim SY; Kim MJ; Shim JW; Park SS; Kim KR; Seo MT; Chae HS; Shim HH
    Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and ergonomic assessment of a passive head/neck supporting exoskeleton for overhead work use.
    Garosi E; Mazloumi A; Jafari AH; Keihani A; Shamsipour M; Kordi R; Kazemi Z
    Appl Ergon; 2022 May; 101():103699. PubMed ID: 35114511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Self-Aligning Upper-Limb Exoskeleton Preserving Natural Shoulder Movements: Kinematic Compatibility Analysis.
    Pan J; Astarita D; Baldoni A; Dell'Agnello F; Crea S; Vitiello N; Trigili E
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4954-4964. PubMed ID: 38064320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Guidelines for Working Heights of the Lower-Limb Exoskeleton (CEX) Based on Ergonomic Evaluations.
    Kong YK; Park CW; Cho MU; Kim SY; Kim MJ; Hyun DJ; Bae K; Choi JK; Ko SM; Choi KH
    Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34068352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Level of exoskeleton support influences shoulder elevation, external rotation and forearm pronation during simulated work tasks in females.
    McFarland TC; McDonald AC; Whittaker RL; Callaghan JP; Dickerson CR
    Appl Ergon; 2022 Jan; 98():103591. PubMed ID: 34628044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Occupational Shoulder Exoskeleton Reduces Muscle Activity and Fatigue During Overhead Work.
    De Bock S; Rossini M; Lefeber D; Rodriguez-Guerrero C; Geeroms J; Meeusen R; De Pauw K
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3008-3020. PubMed ID: 35290183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Passive Shoulder Exoskeleton Using Link Chains and Magnetic Spring Joints.
    Lee HH; Yoon KT; Lim HH; Lee WK; Jung JH; Kim SB; Choi YM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():708-717. PubMed ID: 38285587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of passive back-support exoskeletons on physical demands and usability during patient transfer tasks.
    Hwang J; Kumar Yerriboina VN; Ari H; Kim JH
    Appl Ergon; 2021 May; 93():103373. PubMed ID: 33516046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of two upper-limb exoskeletons during overhead work: influence of exoskeleton design and load on muscular adaptations and balance regulation.
    Desbrosses K; Schwartz M; Theurel J
    Eur J Appl Physiol; 2021 Oct; 121(10):2811-2823. PubMed ID: 34173059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neurophysiological, muscular, and perceptual adaptations of exoskeleton use over days during overhead work with competing cognitive demands.
    Tyagi O; Rana Mukherjee T; Mehta RK
    Appl Ergon; 2023 Nov; 113():104097. PubMed ID: 37506618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of antigravitational support levels provided by a passive upper-limb occupational exoskeleton in repetitive arm movements.
    Ramella G; Grazi L; Giovacchini F; Trigili E; Vitiello N; Crea S
    Appl Ergon; 2024 May; 117():104226. PubMed ID: 38219374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures.
    van Sluijs RM; Wehrli M; Brunner A; Lambercy O
    J Biomech; 2023 Mar; 149():111489. PubMed ID: 36806003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of passive exoskeleton support on EMG measures of the neck, shoulder and trunk muscles while holding simulated surgical postures and performing a simulated surgical procedure.
    Tetteh E; Hallbeck MS; Mirka GA
    Appl Ergon; 2022 Apr; 100():103646. PubMed ID: 34847371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work.
    Bosch T; van Eck J; Knitel K; de Looze M
    Appl Ergon; 2016 May; 54():212-7. PubMed ID: 26851481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I - "Expected" effects on discomfort, shoulder muscle activity, and work task performance.
    Kim S; Nussbaum MA; Mokhlespour Esfahani MI; Alemi MM; Alabdulkarim S; Rashedi E
    Appl Ergon; 2018 Jul; 70():315-322. PubMed ID: 29525268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support.
    van Sluijs R; Scholtysik T; Brunner A; Kuoni L; Bee D; Kos M; Bartenbach V; Lambercy O
    Appl Ergon; 2024 Jun; 120():104332. PubMed ID: 38876001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using a Passive Back Exoskeleton During a Simulated Sorting Task: Influence on Muscle Activity, Posture, and Heart Rate.
    Bär M; Luger T; Seibt R; Rieger MA; Steinhilber B
    Hum Factors; 2024 Jan; 66(1):40-55. PubMed ID: 35225011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Volitional Preemptive Abdominal Contraction and Upper Extremity Muscle Latencies During D1 Flexion and Scaption Shoulder Exercises.
    Scott R; Yang HS; James CR; Sawyer SF; Sizer PS
    J Athl Train; 2018 Dec; 53(12):1181-1189. PubMed ID: 30543446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.