These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36739825)
41. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
42. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263 [TBL] [Abstract][Full Text] [Related]
43. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
44. Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity. Xie Y; Sun W; Yan F; Liu H; Deng Z; Cai L Int J Nanomedicine; 2019; 14():6019-6033. PubMed ID: 31534334 [TBL] [Abstract][Full Text] [Related]
45. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L; Yu H; Yang W; Zhu Z; Yue L J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015 [TBL] [Abstract][Full Text] [Related]
46. Culture & differentiation of mesenchymal stem cell into osteoblast on degradable biomedical composite scaffold: In vitro study. Jain KG; Mohanty S; Ray AR; Malhotra R; Airan B Indian J Med Res; 2015 Dec; 142(6):747-58. PubMed ID: 26831424 [TBL] [Abstract][Full Text] [Related]
47. In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds. Gholipourmalekabadi M; Mozafari M; Gholipourmalekabadi M; Nazm Bojnordi M; Hashemi-Soteh MB; Salimi M; Rezaei N; Sameni M; Samadikuchaksaraei A; Ghasemi Hamidabadi H Biotechnol Appl Biochem; 2015; 62(4):441-50. PubMed ID: 25196187 [TBL] [Abstract][Full Text] [Related]
48. Preparation and biocompatibility of nanohybrid scaffolds by in situ homogeneous formation of nano hydroxyapatite from biopolymer polyelectrolyte complex for bone repair applications. Chen J; Yu Q; Zhang G; Yang S; Wu J; Zhang Q Colloids Surf B Biointerfaces; 2012 May; 93():100-7. PubMed ID: 22297206 [TBL] [Abstract][Full Text] [Related]
49. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related]
50. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. Saber-Samandari S; Yekta H; Ahmadi S; Alamara K Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809 [TBL] [Abstract][Full Text] [Related]
51. The fabrication of halloysite nanotube-based multicomponent hydrogel scaffolds for bone healing. Same S; Kadkhoda J; Navidi G; Abedi F; Aghazadeh M; Milani M; Akbarzadeh A; Davaran S J Appl Biomater Funct Mater; 2022; 20():22808000221111875. PubMed ID: 35906767 [TBL] [Abstract][Full Text] [Related]
52. A novel natural-derived tilapia skin collagen mineralized with hydroxyapatite as a potential bone-grafting scaffold. Yao S; Shang Y; Ren B; Deng S; Wang Z; Peng Y; Huang Z; Ma S; Peng C; Hou S J Biomater Appl; 2022 Aug; 37(2):219-237. PubMed ID: 35345923 [TBL] [Abstract][Full Text] [Related]
53. [Property studies on three-dimensional porous blended silk scaffolds]. Rao J; Shen J; Quan D; Xu Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853 [TBL] [Abstract][Full Text] [Related]
54. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228 [TBL] [Abstract][Full Text] [Related]
55. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. Pallela R; Venkatesan J; Janapala VR; Kim SK J Biomed Mater Res A; 2012 Feb; 100(2):486-95. PubMed ID: 22125128 [TBL] [Abstract][Full Text] [Related]
56. Arabinoxylan-co-AA/HAp/TiO Khan MUA; Haider S; Shah SA; Razak SIA; Hassan SA; Kadir MRA; Haider A Int J Biol Macromol; 2020 May; 151():584-594. PubMed ID: 32081758 [TBL] [Abstract][Full Text] [Related]
57. Supercritical CO Ruphuy G; Souto-Lopes M; Paiva D; Costa P; Rodrigues AE; Monteiro FJ; Salgado CL; Fernandes MH; Lopes JC; Dias MM; Barreiro MF J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):965-975. PubMed ID: 28470936 [TBL] [Abstract][Full Text] [Related]
58. Three Component Composite Scaffolds Based on PCL, Hydroxyapatite, and L-Lysine Obtained in TIPS-SL: Bioactive Material for Bone Tissue Engineering. Korbut A; Włodarczyk M; Rudnicka K; Szwed A; Płociński P; Biernat M; Tymowicz-Grzyb P; Michalska M; Karska N; Rodziewicz-Motowidło S; Szustakiewicz K Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948389 [TBL] [Abstract][Full Text] [Related]
59. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair. Zhou K; Yu P; Shi X; Ling T; Zeng W; Chen A; Yang W; Zhou Z ACS Nano; 2019 Aug; 13(8):9595-9606. PubMed ID: 31381856 [TBL] [Abstract][Full Text] [Related]
60. Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration. Li X; Zhang R; Tan X; Li B; Liu Y; Wang X Int J Med Sci; 2019; 16(7):1007-1017. PubMed ID: 31341414 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]