These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36739962)

  • 1. Semi-automated red blood cell core detection in blood micro-flow.
    Fenech M; Le AV; Salame M; Gliah O; Chartrand C
    Microvasc Res; 2023 May; 147():104496. PubMed ID: 36739962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation.
    Gracka M; Lima R; Miranda JM; Student S; Melka B; Ostrowski Z
    Comput Methods Programs Biomed; 2022 Nov; 226():107117. PubMed ID: 36122496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing cell-free layer thickness by bypass channels in a wall.
    Saadatmand M; Shimogonya Y; Yamaguchi T; Ishikawa T
    J Biomech; 2016 Jul; 49(11):2299-2305. PubMed ID: 26803337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation.
    Ng YC; Namgung B; Tien SL; Leo HL; Kim S
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H487-97. PubMed ID: 27233764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfusion pressure and blood flow determine microvascular apparent viscosity.
    Yalcin O; Ortiz D; Williams AT; Johnson PC; Cabrales P
    Exp Physiol; 2015 Aug; 100(8):977-87. PubMed ID: 26011432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle.
    Yalcin O; Jani VP; Johnson PC; Cabrales P
    Front Physiol; 2018; 9():168. PubMed ID: 29615916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of erythrocyte aggregation at pathological levels on cell-free marginal layer in a narrow circular tube.
    Namgung B; Sakai H; Kim S
    Clin Hemorheol Microcirc; 2015; 61(3):445-57. PubMed ID: 25335815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels.
    Zhang J
    Microcirculation; 2011 Oct; 18(7):562-73. PubMed ID: 21624001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EVA: Fully automatic hemodynamics assessment system for the bulbar conjunctival microvascular network.
    Yun Z; Xu Q; Wang G; Jin S; Lin G; Feng Q; Yuan J
    Comput Methods Programs Biomed; 2022 Apr; 216():106631. PubMed ID: 35123347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution.
    Yalcin O; Wang Q; Johnson PC; Palmer AF; Cabrales P
    Biorheology; 2011; 48(5):277-91. PubMed ID: 22433569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of uneven red cell influx on formation of cell-free layer in small venules.
    Namgung B; Kim S
    Microvasc Res; 2014 Mar; 92():19-24. PubMed ID: 24472285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A system for the high-throughput measurement of the shear modulus distribution of human red blood cells.
    Saadat A; Huyke DA; Oyarzun DI; Escobar PV; Øvreeide IH; Shaqfeh ESG; Santiago JG
    Lab Chip; 2020 Aug; 20(16):2927-2936. PubMed ID: 32648561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particulate Blood Analogues Reproducing the Erythrocytes Cell-Free Layer in a Microfluidic Device Containing a Hyperbolic Contraction.
    Calejo J; Pinho D; Galindo-Rosales FJ; Lima R; Campo-Deaño L
    Micromachines (Basel); 2015 Dec; 7(1):. PubMed ID: 30407376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the microvascular mechanisms of drag reducing polymers: effect on the cell-free layer.
    Brands J; Kliner D; Lipowsky HH; Kameneva MV; Villanueva FS; Pacella JJ
    PLoS One; 2013; 8(10):e77252. PubMed ID: 24124610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of cell-free layer thickness and cell distribution of blood by optical coherence tomography.
    Lauri J; Bykov A; Fabritius T
    J Biomed Opt; 2016 Apr; 21(4):40501. PubMed ID: 27071412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A processing work-flow for measuring erythrocytes velocity in extended vascular networks from wide field high-resolution optical imaging data.
    Deneux T; Takerkart S; Grinvald A; Masson GS; Vanzetta I
    Neuroimage; 2012 Feb; 59(3):2569-88. PubMed ID: 21925275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.