These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36740121)

  • 1. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases".
    Sharma KK; Singh D; Mohite SV; Williamson PR; Kennedy JF
    Int J Biol Macromol; 2023 Apr; 233():123534. PubMed ID: 36740121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management.
    Kaur K; Sharma A; Capalash N; Sharma P
    Microbiol Res; 2019 May; 222():1-13. PubMed ID: 30928025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family.
    Frye KA; Sendra KM; Waldron KJ; Kehl-Fie TE
    J Inorg Biochem; 2022 May; 230():111748. PubMed ID: 35151099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential metals in health and disease.
    Jomova K; Makova M; Alomar SY; Alwasel SH; Nepovimova E; Kuca K; Rhodes CJ; Valko M
    Chem Biol Interact; 2022 Nov; 367():110173. PubMed ID: 36152810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens.
    Schatzman SS; Culotta VC
    ACS Infect Dis; 2018 Jun; 4(6):893-903. PubMed ID: 29517910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Analyses of the Multicopper Site of CopG Support a Role as a Redox Enzyme.
    Hausrath AC; McEvoy MM
    Adv Exp Med Biol; 2023; 1414():97-121. PubMed ID: 36637718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry and biochemistry of superoxide dismutases.
    Hassan HM; Fridovich I
    Eur J Rheumatol Inflamm; 1981; 4(2):160-72. PubMed ID: 7343318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence.
    Porcheron G; Garénaux A; Proulx J; Sabri M; Dozois CM
    Front Cell Infect Microbiol; 2013; 3():90. PubMed ID: 24367764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains.
    Robinett NG; Peterson RL; Culotta VC
    J Biol Chem; 2018 Mar; 293(13):4636-4643. PubMed ID: 29259135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shall we dance? How a multicopper oxidase chooses its electron transfer partner.
    Quintanar L; Stoj C; Taylor AB; Hart PJ; Kosman DJ; Solomon EI
    Acc Chem Res; 2007 Jun; 40(6):445-52. PubMed ID: 17425282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the O2 reduction mechanism of multicopper oxidase.
    Komori H; Higuchi Y
    J Biochem; 2015 Oct; 158(4):293-8. PubMed ID: 26272825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology.
    Kosman DJ
    J Biol Inorg Chem; 2010 Jan; 15(1):15-28. PubMed ID: 19816718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox tuning over almost 1 V in a structurally conserved active site: lessons from Fe-containing superoxide dismutase.
    Miller AF
    Acc Chem Res; 2008 Apr; 41(4):501-10. PubMed ID: 18376853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicopper oxidase of Acinetobacter baumannii: Assessing its role in metal homeostasis, stress management and virulence.
    Kaur K; Sidhu H; Capalash N; Sharma P
    Microb Pathog; 2020 Jun; 143():104124. PubMed ID: 32169492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.
    Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A
    Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal ions in biological catalysis: from enzyme databases to general principles.
    Andreini C; Bertini I; Cavallaro G; Holliday GL; Thornton JM
    J Biol Inorg Chem; 2008 Nov; 13(8):1205-18. PubMed ID: 18604568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: characterization of a metallo-oxidase.
    Silva CS; Durão P; Fillat A; Lindley PF; Martins LO; Bento I
    Metallomics; 2012 Jan; 4(1):37-47. PubMed ID: 22127520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicopper oxidases: modular structure, sequence space, and evolutionary relationships.
    Gräff M; Buchholz PCF; Le Roes-Hill M; Pleiss J
    Proteins; 2020 Oct; 88(10):1329-1339. PubMed ID: 32447824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolutionary path to altered cofactor specificity in a metalloenzyme.
    Barwinska-Sendra A; Garcia YM; Sendra KM; Baslé A; Mackenzie ES; Tarrant E; Card P; Tabares LC; Bicep C; Un S; Kehl-Fie TE; Waldron KJ
    Nat Commun; 2020 Jun; 11(1):2738. PubMed ID: 32483131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in tuning redox properties of electron transfer centers in metalloenzymes catalyzing oxygen reduction reaction and H
    Vilbert AC; Liu Y; Dai H; Lu Y
    Curr Opin Electrochem; 2021 Dec; 30():. PubMed ID: 34435160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.