These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36741239)

  • 21. An Energy-Efficient CMOS Dual-Mode Array Architecture for High-Density ECoG-Based Brain-Machine Interfaces.
    Malekzadeh-Arasteh O; Pu H; Lim J; Liu CY; Do AH; Nenadic Z; Heydari P
    IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):332-342. PubMed ID: 31902769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Training Deep Spiking Neural Networks Using Backpropagation.
    Lee JH; Delbruck T; Pfeiffer M
    Front Neurosci; 2016; 10():508. PubMed ID: 27877107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spike encoding techniques for IoT time-varying signals benchmarked on a neuromorphic classification task.
    Forno E; Fra V; Pignari R; Macii E; Urgese G
    Front Neurosci; 2022; 16():999029. PubMed ID: 36620463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An implantable ENG detector with in-system velocity selective recording (VSR) capability.
    Clarke C; Rieger R; Schuettler M; Donaldson N; Taylor J
    Med Biol Eng Comput; 2017 Jun; 55(6):885-895. PubMed ID: 27638107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly efficient neuromorphic learning system of spiking neural network with multi-compartment leaky integrate-and-fire neurons.
    Gao T; Deng B; Wang J; Yi G
    Front Neurosci; 2022; 16():929644. PubMed ID: 36248664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A low-power programmable neural spike detection channel with embedded calibration and data compression.
    Rodriguez-Perez A; Ruiz-Amaya J; Delgado-Restituto M; Rodriguez-Vazquez Á
    IEEE Trans Biomed Circuits Syst; 2012 Apr; 6(2):87-100. PubMed ID: 23852974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems.
    Guo W; Fouda ME; Eltawil AM; Salama KN
    Front Neurosci; 2021; 15():638474. PubMed ID: 33746705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A low-power configurable neural recording system for epileptic seizure detection.
    Qian C; Shi J; Parramon J; Sánchez-Sinencio E
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):499-512. PubMed ID: 23893209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.
    Lee SB; Lee B; Kiani M; Mahmoudi B; Gross R; Ghovanloo M
    IEEE Sens J; 2016 Jan; 16(2):475-484. PubMed ID: 27069422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
    Rasouli M; Chen Y; Basu A; Kukreja SL; Thakor NV
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):313-325. PubMed ID: 29570059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.
    Kobayashi A; Ikeda K; Ogawa Y; Kai H; Nishizawa M; Nakazato K; Niitsu K
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1313-1323. PubMed ID: 29293424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applications.
    Wang Y; Zhou R; Liu Z; Yan B
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dual slope charge sampling analog front-end for a wireless neural recording system.
    Lee SB; Lee B; Gosselin B; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3134-7. PubMed ID: 25570655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A low-power 32-channel digitally programmable neural recording integrated circuit.
    Wattanapanitch W; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2011 Dec; 5(6):592-602. PubMed ID: 23852555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI.
    Xiao C; Chen J; Wang L
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A 64-Channel Versatile Neural Recording SoC With Activity-Dependent Data Throughput.
    Liu Y; Luan S; Williams I; Rapeaux A; Constandinou TG
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1344-1355. PubMed ID: 29293425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A New Spiking Convolutional Recurrent Neural Network (SCRNN) With Applications to Event-Based Hand Gesture Recognition.
    Xing Y; Di Caterina G; Soraghan J
    Front Neurosci; 2020; 14():590164. PubMed ID: 33324153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System.
    Ben Abdallah A; Dang KN
    Front Neurosci; 2021; 15():690208. PubMed ID: 34248491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks.
    Yu C; Du Y; Chen M; Wang A; Wang G; Li E
    Front Neurosci; 2022; 16():945037. PubMed ID: 36203801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware.
    Müller-Cleve SF; Fra V; Khacef L; Pequeño-Zurro A; Klepatsch D; Forno E; Ivanovich DG; Rastogi S; Urgese G; Zenke F; Bartolozzi C
    Front Neurosci; 2022; 16():951164. PubMed ID: 36440280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.