BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36741529)

  • 1. Acene enlargement for absorption red-shifting and photosensitization enhancement of photosensitizers with aggregation-induced emission.
    Wang Q; Li C; Song Y; Shi Q; Li H; Zhong H; Wang J; Hu F
    Chem Sci; 2023 Jan; 14(3):684-690. PubMed ID: 36741529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular engineering to red-shift the absorption band of AIE photosensitizers and improve their ROS generation ability.
    Zhang Y; Pan X; Shi H; Wang Y; Liu W; Cai L; Wang L; Wang H; Chen Z
    J Mater Chem B; 2023 Apr; 11(14):3252-3261. PubMed ID: 36971133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold Nanostars-AIE Theranostic Nanodots with Enhanced Fluorescence and Photosensitization Towards Effective Image-Guided Photodynamic Therapy.
    Tavakkoli Yaraki M; Wu M; Middha E; Wu W; Daqiqeh Rezaei S; Liu B; Tan YN
    Nanomicro Lett; 2021 Jan; 13(1):58. PubMed ID: 34138261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications.
    Hu F; Xu S; Liu B
    Adv Mater; 2018 Nov; 30(45):e1801350. PubMed ID: 30066341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AIE material for photodynamic therapy.
    Saini V; Venkatesh V
    Prog Mol Biol Transl Sci; 2021; 185():45-73. PubMed ID: 34782107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation.
    Chen D; Long Z; Zhong C; Chen L; Dang Y; Hu JJ; Lou X; Xia F
    ACS Appl Bio Mater; 2021 Jun; 4(6):5231-5239. PubMed ID: 35007005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application.
    Jia S; Yuan H; Hu R
    Biomater Sci; 2022 Aug; 10(16):4443-4457. PubMed ID: 35789348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers.
    Liu J; Chen W; Zheng C; Hu F; Zhai J; Bai Q; Sun N; Qian G; Zhang Y; Dong K; Lu T
    Eur J Med Chem; 2022 Dec; 244():114843. PubMed ID: 36265281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodynamic Therapy with Liposomes Encapsulating Photosensitizers with Aggregation-Induced Emission.
    Yang Y; Wang L; Cao H; Li Q; Li Y; Han M; Wang H; Li J
    Nano Lett; 2019 Mar; 19(3):1821-1826. PubMed ID: 30768274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual Electron Donor-Acceptor Sequenced NIR AIEgen for Highly Efficient Mitochondria-Targeted Cancer Cell Photodynamic Therapy.
    Yu K; Pan J; Tian M; Zhang H; Jin C; Zhang H; Mao Z; He Q
    Chem Asian J; 2022 Sep; 17(17):e202200571. PubMed ID: 35789116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress and trends of photodynamic therapy: From traditional photosensitizers to AIE-based photosensitizers.
    Wang S; Wang X; Yu L; Sun M
    Photodiagnosis Photodyn Ther; 2021 Jun; 34():102254. PubMed ID: 33713845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reviewing the evolutive ACQ-to-AIE transformation of photosensitizers for phototheranostics.
    Zhu W; Huang L; Wu C; Liu L; Li H
    Luminescence; 2023 Dec; ():. PubMed ID: 38148620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical.
    Meng Z; Xue H; Wang T; Chen B; Dong X; Yang L; Dai J; Lou X; Xia F
    J Nanobiotechnology; 2022 Jul; 20(1):344. PubMed ID: 35883086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation.
    Tavakkoli Yaraki M; Hu F; Daqiqeh Rezaei S; Liu B; Tan YN
    Nanoscale Adv; 2020 Jul; 2(7):2859-2869. PubMed ID: 36132415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of tetraphenylethene-based D-A conjugated molecules with near-infrared AIE features, and their application in photodynamic therapy.
    Li L; Yuan G; Qi Q; Lv C; Liang J; Li H; Cao L; Zhang X; Wang S; Cheng Y; He H
    J Mater Chem B; 2022 May; 10(18):3550-3559. PubMed ID: 35420087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Donor-Acceptor Modulating of Ionic AIE Photosensitizers for Enhanced ROS Generation and NIR-II Emission.
    Yang X; Wang X; Zhang X; Zhang J; Lam JWY; Sun H; Yang J; Liang Y; Tang BZ
    Adv Mater; 2024 Apr; ():e2402182. PubMed ID: 38663035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricting Bond Rotations by Ring Fusion: A Novel Molecular Design Strategy to Improve Photodynamic Antibacterial Efficacy of AIE Photosensitizers.
    Shi H; Pan X; Wang Y; Wang H; Liu W; Wang L; Chen Z
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17055-17064. PubMed ID: 35380770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy.
    Yu H; Chen B; Huang H; He Z; Sun J; Wang G; Gu X; Tang BZ
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of PEG-b-PAA Carrier and Efficient Cationic Photosensitizers for Photodynamic Therapy.
    Yang H; Shang Z; Shi Q; Gao J; Wang X; Hu F
    Chem Asian J; 2023 May; 18(10):e202300212. PubMed ID: 37029595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescent AIE Dots for Anticancer Photodynamic Therapy.
    He Z; Tian S; Gao Y; Meng F; Luo L
    Front Chem; 2021; 9():672917. PubMed ID: 34113602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.