These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36741754)
1. PLATERO: A calibration protocol for plate reader green fluorescence measurements. González-Cebrián A; Borràs-Ferrís J; Boada Y; Vignoni A; Ferrer A; Picó J Front Bioeng Biotechnol; 2023; 11():1104445. PubMed ID: 36741754 [TBL] [Abstract][Full Text] [Related]
2. Multicolor plate reader fluorescence calibration. Beal J; Telmer CA; Vignoni A; Boada Y; Baldwin GS; Hallett L; Lee T; Selvarajah V; Billerbeck S; Brown B; Cai GN; Cai L; Eisenstein E; Kiga D; Ross D; Alperovich N; Sprent N; Thompson J; Young EM; Endy D; Haddock-Angelli T Synth Biol (Oxf); 2022; 7(1):ysac010. PubMed ID: 35949424 [TBL] [Abstract][Full Text] [Related]
3. Standardization of Fluorescent Reporter Assays in Synthetic Biology across the Visible Light Spectrum. De Wannemaeker L; Mey F; Bervoets I; Ver Cruysse M; Baldwin GS; De Mey M ACS Synth Biol; 2023 Dec; 12(12):3591-3607. PubMed ID: 37981737 [TBL] [Abstract][Full Text] [Related]
4. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)]. ; ; Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959 [TBL] [Abstract][Full Text] [Related]
5. FlopR: An Open Source Software Package for Calibration and Normalization of Plate Reader and Flow Cytometry Data. Fedorec AJH; Robinson CM; Wen KY; Barnes CP ACS Synth Biol; 2020 Sep; 9(9):2258-2266. PubMed ID: 32854500 [TBL] [Abstract][Full Text] [Related]
6. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units. Castillo-Hair SM; Sexton JT; Landry BP; Olson EJ; Igoshin OA; Tabor JJ ACS Synth Biol; 2016 Jul; 5(7):774-80. PubMed ID: 27110723 [TBL] [Abstract][Full Text] [Related]
7. Quantification of bacterial fluorescence using independent calibrants. Beal J; Haddock-Angelli T; Baldwin G; Gershater M; Dwijayanti A; Storch M; de Mora K; Lizarazo M; Rettberg R; PLoS One; 2018; 13(6):e0199432. PubMed ID: 29928012 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of three studies measuring fluorescence from engineered bacterial genetic constructs. Beal J; Baldwin GS; Farny NG; Gershater M; Haddock-Angelli T; Buckley-Taylor R; Dwijayanti A; Kiga D; Lizarazo M; Marken J; de Mora K; Rettberg R; Sanchania V; Selvarajah V; Sison A; Storch M; Workman CT; PLoS One; 2021; 16(6):e0252263. PubMed ID: 34097703 [TBL] [Abstract][Full Text] [Related]
9. Standardizing CT lung density measure across scanner manufacturers. Chen-Mayer HH; Fuld MK; Hoppel B; Judy PF; Sieren JP; Guo J; Lynch DA; Possolo A; Fain SB Med Phys; 2017 Mar; 44(3):974-985. PubMed ID: 28060414 [TBL] [Abstract][Full Text] [Related]
10. Quasi-continuous parallel online scattered light, fluorescence and dissolved oxygen tension measurement combined with monitoring of the oxygen transfer rate in each well of a shaken microtiter plate. Ladner T; Held M; Flitsch D; Beckers M; Büchs J Microb Cell Fact; 2016 Dec; 15(1):206. PubMed ID: 27912768 [TBL] [Abstract][Full Text] [Related]
11. NIST/ISAC standardization study: variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads. Hoffman RA; Wang L; Bigos M; Nolan JP Cytometry A; 2012 Sep; 81(9):785-96. PubMed ID: 22915363 [TBL] [Abstract][Full Text] [Related]
12. Direct plate-reader measurement of nitric oxide released from hypoxic erythrocytes flowing through a microfluidic device. Halpin ST; Spence DM Anal Chem; 2010 Sep; 82(17):7492-7. PubMed ID: 20681630 [TBL] [Abstract][Full Text] [Related]
14. A quantitative protocol for intensity-based live cell FRET imaging. Kaminski CF; Rees EJ; Schierle GS Methods Mol Biol; 2014; 1076():445-54. PubMed ID: 24108638 [TBL] [Abstract][Full Text] [Related]
15. Data reproducibility in fluorescence image analysis. Souchier C; Brisson C; Batteux B; Robert-Nicoud M; Bryon PA Methods Cell Sci; 2003; 25(3-4):195-200. PubMed ID: 15801165 [TBL] [Abstract][Full Text] [Related]
16. Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources. Elder AD; Frank JH; Swartling J; Dai X; Kaminski CF J Microsc; 2006 Nov; 224(Pt 2):166-80. PubMed ID: 17204064 [TBL] [Abstract][Full Text] [Related]
17. Absolute protein quantification using fluorescence measurements with FPCountR. Csibra E; Stan GB Nat Commun; 2022 Nov; 13(1):6600. PubMed ID: 36329019 [TBL] [Abstract][Full Text] [Related]
18. A flow cytometer designed for fluorescence calibration. Shapiro HM; Perlmutter NG; Stein PG Cytometry; 1998 Oct; 33(2):280-7. PubMed ID: 9773891 [TBL] [Abstract][Full Text] [Related]
19. Intrinsic variability of fluorescence calibrators impacts the assignment of MESF or ERF values to nanoparticles and extracellular vesicles by flow cytometry. Lozano-Andrés E; Van Den Broeck T; Wang L; Mehrpouyan M; Tian Y; Yan X; Arkesteijn GJA; Wauben MHM Nanomedicine; 2024 Feb; 56():102720. PubMed ID: 38007067 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements. Boada Y; Vignoni A; Alarcon-Ruiz I; Andreu-Vilarroig C; Monfort-Llorens R; Requena A; Picó J Chembiochem; 2019 Oct; 20(20):2653-2665. PubMed ID: 31269324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]