These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 36741765)

  • 1. Recent advances in biological pumps as a building block for bioartificial hearts.
    Brimmer S; Ji P; Birla AK; Keswani SG; Caldarone CA; Birla RK
    Front Bioeng Biotechnol; 2023; 11():1061622. PubMed ID: 36741765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review.
    Fang Y; Sun W; Zhang T; Xiong Z
    Biomaterials; 2022 Jan; 280():121298. PubMed ID: 34864451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue engineering solutions to replace contractile function during pediatric heart surgery.
    Williams SK; Birla RK
    Tissue Cell; 2020 Dec; 67():101452. PubMed ID: 33137707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioartificial grafts for transmural myocardial restoration: a new cardiovascular tissue culture concept.
    Kofidis T; Lenz A; Boublik J; Akhyari P; Wachsmann B; Stahl KM; Haverich A; Leyh RG
    Eur J Cardiothorac Surg; 2003 Dec; 24(6):906-11. PubMed ID: 14643807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
    Zhang J; Wehrle E; Rubert M; Müller R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A methodological nine-step process to bioengineer heart muscle tissue.
    Birla RK
    Tissue Cell; 2020 Dec; 67():101425. PubMed ID: 32853859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioengineering approaches to treat the failing heart: from cell biology to 3D printing.
    Yadid M; Oved H; Silberman E; Dvir T
    Nat Rev Cardiol; 2022 Feb; 19(2):83-99. PubMed ID: 34453134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterializing the promise of cardiac tissue engineering.
    Pomeroy JE; Helfer A; Bursac N
    Biotechnol Adv; 2020; 42():107353. PubMed ID: 30794878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid.
    Kupfer ME; Lin WH; Ravikumar V; Qiu K; Wang L; Gao L; Bhuiyan DB; Lenz M; Ai J; Mahutga RR; Townsend D; Zhang J; McAlpine MC; Tolkacheva EG; Ogle BM
    Circ Res; 2020 Jul; 127(2):207-224. PubMed ID: 32228120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing the Framework for Fabrication of a Bioartificial Heart.
    Tao ZW; Mohamed M; Hogan M; Salazar B; Patel NM; Birla RK
    ASAIO J; 2015; 61(4):429-36. PubMed ID: 25955151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Heart valve and myocardial tissue engineering].
    Cebotari S; Tudorache I; Schilling T; Haverich A
    Herz; 2010 Aug; 35(5):334-41. PubMed ID: 20631970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-based cardiac pumps and tissue-engineered ventricles.
    Khait L; Birla RK
    Regen Med; 2007 Jul; 2(4):391-406. PubMed ID: 17635047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.
    Magin CM; Alge DL; Anseth KS
    Biomed Mater; 2016 Mar; 11(2):022001. PubMed ID: 26942469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building a Total Bioartificial Heart: Harnessing Nature to Overcome the Current Hurdles.
    Taylor DA; Frazier OH; Elgalad A; Hochman-Mendez C; Sampaio LC
    Artif Organs; 2018 Oct; 42(10):970-982. PubMed ID: 30044011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the road to bioartificial organs.
    Ren X; Ott HC
    Pflugers Arch; 2014 Oct; 466(10):1847-57. PubMed ID: 24691559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Bio-artificial organs: cardiac applications].
    Flameng W
    Verh K Acad Geneeskd Belg; 2004; 66(4):246-52. PubMed ID: 15553097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinting in cardiac tissue engineering.
    Wang Z; Wang L; Li T; Liu S; Guo B; Huang W; Wu Y
    Theranostics; 2021; 11(16):7948-7969. PubMed ID: 34335973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprinting of artificial blood vessels: current approaches towards a demanding goal.
    Hoch E; Tovar GE; Borchers K
    Eur J Cardiothorac Surg; 2014 Nov; 46(5):767-78. PubMed ID: 24970571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascularization in Bioartificial Parenchymal Tissue: Bioink and Bioprinting Strategies.
    Salg GA; Blaeser A; Gerhardus JS; Hackert T; Kenngott HG
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.