These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 36741796)
1. Morning Walk Jung C; Kim DY; Kwon S; Chun MH; Kim J; Kim SH Brain Neurorehabil; 2020 Nov; 13(3):e23. PubMed ID: 36741796 [TBL] [Abstract][Full Text] [Related]
2. The effect of robot-assisted gait training on cortical activation in stroke patients: A functional near-infrared spectroscopy study. Song KJ; Chun MH; Lee J; Lee C NeuroRehabilitation; 2021; 49(1):65-73. PubMed ID: 33998555 [TBL] [Abstract][Full Text] [Related]
3. Effects of robot-(Morning Walk Kim J; Kim DY; Chun MH; Kim SW; Jeon HR; Hwang CH; Choi JK; Bae S Clin Rehabil; 2019 Mar; 33(3):516-523. PubMed ID: 30326747 [TBL] [Abstract][Full Text] [Related]
4. Intensity control of robot-assisted gait training based on biometric data: Preliminary study. Jiae K; Chun MH; Lee J; Kim JW; Lee JY Medicine (Baltimore); 2022 Sep; 101(38):e30818. PubMed ID: 36197213 [TBL] [Abstract][Full Text] [Related]
5. Comparison of high-intensive and low-intensive electromechanical-assisted gait training by Exowalk® in patients over 3-month post-stroke. Yu CS; Nam YG; Kwon BS BMC Sports Sci Med Rehabil; 2022 Jul; 14(1):126. PubMed ID: 35818062 [TBL] [Abstract][Full Text] [Related]
6. Effects of end-effector robot-assisted gait training on gait ability, muscle strength, and balance in patients with spinal cord injury. Shin JC; Jeon HR; Kim D; Min WK; Lee JS; Cho SI; Oh DS; Yoo J NeuroRehabilitation; 2023; 53(3):335-346. PubMed ID: 37638457 [TBL] [Abstract][Full Text] [Related]
7. End-effector lower limb robot-assisted gait training effects in subacute stroke patients: A randomized controlled pilot trial. Lee J; Kim DY; Lee SH; Kim JH; Kim DY; Lim KB; Yoo J Medicine (Baltimore); 2023 Oct; 102(42):e35568. PubMed ID: 37861512 [TBL] [Abstract][Full Text] [Related]
8. Effects of a lower limb rehabilitation robot with various training modes in patients with stroke: A randomized controlled trial. Lee J; Chun MH; Seo YJ; Lee A; Choi J; Son C Medicine (Baltimore); 2022 Nov; 101(44):e31590. PubMed ID: 36343085 [TBL] [Abstract][Full Text] [Related]
10. Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients. Shin JC; Jeon HR; Kim D; Cho SI; Min WK; Lee JS; Oh DS; Yoo J Brain Sci; 2021 Sep; 11(10):. PubMed ID: 34679346 [TBL] [Abstract][Full Text] [Related]
11. Effects of robot (SUBAR)-assisted gait training in patients with chronic stroke: Randomized controlled trial. Kang CJ; Chun MH; Lee J; Lee JY Medicine (Baltimore); 2021 Dec; 100(48):e27974. PubMed ID: 35049203 [TBL] [Abstract][Full Text] [Related]
12. The effects of robot-assisted gait training using virtual reality and auditory stimulation on balance and gait abilities in persons with stroke. Park J; Chung Y NeuroRehabilitation; 2018; 43(2):227-235. PubMed ID: 30040760 [TBL] [Abstract][Full Text] [Related]
13. Effects of the Robot-Assisted Gait Training Device Plus Physiotherapy in Improving Ambulatory Functions in Patients With Subacute Stroke With Hemiplegia: An Assessor-Blinded, Randomized Controlled Trial. Thimabut N; Yotnuengnit P; Charoenlimprasert J; Sillapachai T; Hirano S; Saitoh E; Piravej K Arch Phys Med Rehabil; 2022 May; 103(5):843-850. PubMed ID: 35143747 [TBL] [Abstract][Full Text] [Related]
14. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Freivogel S; Mehrholz J; Husak-Sotomayor T; Schmalohr D Brain Inj; 2008 Jul; 22(7-8):625-32. PubMed ID: 18568717 [TBL] [Abstract][Full Text] [Related]
15. Feasibility and effects of newly developed balance control trainer for mobility and balance in chronic stroke patients: a randomized controlled trial. Lee SH; Byun SD; Kim CH; Go JY; Nam HU; Huh JS; Jung TD Ann Rehabil Med; 2012 Aug; 36(4):521-9. PubMed ID: 22977778 [TBL] [Abstract][Full Text] [Related]
16. Gait Recovery with an Overground Powered Exoskeleton: A Randomized Controlled Trial on Subacute Stroke Subjects. Molteni F; Guanziroli E; Goffredo M; Calabrò RS; Pournajaf S; Gaffuri M; Gasperini G; Filoni S; Baratta S; Galafate D; Le Pera D; Bramanti P; Franceschini M; On Behalf Of Italian Eksogait Study Group Brain Sci; 2021 Jan; 11(1):. PubMed ID: 33466749 [TBL] [Abstract][Full Text] [Related]
17. Effects of Electromechanical Exoskeleton-Assisted Gait Training on Walking Ability of Stroke Patients: A Randomized Controlled Trial. Nam YG; Lee JW; Park JW; Lee HJ; Nam KY; Park JH; Yu CS; Choi MR; Kwon BS Arch Phys Med Rehabil; 2019 Jan; 100(1):26-31. PubMed ID: 30055163 [TBL] [Abstract][Full Text] [Related]
18. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Morone G; Bragoni M; Iosa M; De Angelis D; Venturiero V; Coiro P; Pratesi L; Paolucci S Neurorehabil Neural Repair; 2011 Sep; 25(7):636-44. PubMed ID: 21444654 [TBL] [Abstract][Full Text] [Related]
19. Comparing the Effects of Exoskeletal-Type Robot-Assisted Gait Training on Patients with Ataxic or Hemiplegic Stroke. Son S; Lim KB; Kim J; Lee C; Cho SI; Yoo J Brain Sci; 2022 Sep; 12(9):. PubMed ID: 36138997 [TBL] [Abstract][Full Text] [Related]
20. Effects of Balance Control Training on Functional Outcomes in Subacute Hemiparetic Stroke Patients. Huh JS; Lee YS; Kim CH; Min YS; Kang MG; Jung TD Ann Rehabil Med; 2015 Dec; 39(6):995-1001. PubMed ID: 26798615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]