BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 36743042)

  • 1. Study on the Evolution of Fault Permeability and the Retention of Coal (Rock) Pillar under the Mining Conditions of Thick Coal Seam in the Footwall of Large Normal Fault.
    Yin H; Tang R; Xie D; Lang N; Li S; Zhang X; Cheng Y; Wang S; Li A
    ACS Omega; 2023 Jan; 8(4):4187-4195. PubMed ID: 36743042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rock Damage Model Coupled Stress-Seepage and Its Application in Water Inrush from Faults in Coal Mines.
    Shao J; Zhang W; Wu X; Lei Y; Wu X
    ACS Omega; 2022 Apr; 7(16):13604-13614. PubMed ID: 35559151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar.
    Ma D; Wang J; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Effect of Small Faults on the Gas Content in No. 3 Coal Seam of the Changping Mine Field.
    Feng S; Chen X; Dong X; Wang L; Li G
    ACS Omega; 2023 May; 8(19):16800-16808. PubMed ID: 37214710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similar experimental study on retaining waterproof coal pillar in composite strata mining.
    Wang YQ; Wang X; Zhang JS; Yang BS; Zhu WJ; Wang ZP
    Sci Rep; 2022 Jan; 12(1):1366. PubMed ID: 35079074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear evolution characteristics and seepage mechanical model of fluids in broken rock mass based on the bifurcation theory.
    Yunlong J; Zhengzheng C; Zhenhua L; Feng D; Cunhan H; Haixiao L; Wenqiang W; Minglei Z
    Sci Rep; 2024 May; 14(1):10982. PubMed ID: 38744948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on dynamic response characteristics of normal fault footwall working face and rock burst prevention technology under the influence of the gob area.
    Tai L; Li C; Gu S; Yu X; Xu Z; Sun L
    Sci Rep; 2023 Oct; 13(1):18676. PubMed ID: 37907527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breaking law of overburden rock and key mining technology for narrow coal pillar working face in isolated island.
    Feng D; Zhenhua L; Songtao L; Xiaolei L; Guodong L; Xuan F; Hao R; Zhengzheng C
    Sci Rep; 2024 Jun; 14(1):13045. PubMed ID: 38844674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coal-rock damage characteristics caused by blasting within a reverse fault and its resultant effects on coal and gas outburst.
    Gao K; Huang P; Liu Z; Liu J; Shu C; Qiao G
    Sci Rep; 2021 Sep; 11(1):19158. PubMed ID: 34580370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reasonable coal pillar design and remote control mining technology for highwall residual coal resources.
    Wang F; Zhang C
    R Soc Open Sci; 2019 Apr; 6(4):181817. PubMed ID: 31183120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on the seepage mutation of natural karst collapse pillar (KCP) fillings over mass outflow.
    Zhang B; Liu G; Li Y; Lin Z
    Environ Sci Pollut Res Int; 2023 Nov; 30(51):110995-111007. PubMed ID: 37798525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of the activation of mining faults and grouting reinforcement under thick loose layer and thin bedrock.
    Zhang W; Lei Y; Shao J; Wu X; Li S; Ma C
    Sci Rep; 2022 Oct; 12(1):17049. PubMed ID: 36220976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and Prevention of Rock Burst Risk of Working Face under the Influence of Continuous Irregular Triangular Coal Pillar Stress Concentration Area.
    Chen X; Zhou D; Zhang S; Liang X; Dong Y
    ACS Omega; 2024 Mar; 9(11):12927-12940. PubMed ID: 38524431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal ore pressure mechanism of working face under the influence of overlying concentrated coal pillar.
    Zhengzheng C; Qiang S; Zhenhua L; Feng D
    Sci Rep; 2024 Jan; 14(1):626. PubMed ID: 38182715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on roadway layout and surrounding rock control of isolated island panel.
    Shi L; Zhang J; Lu W; Lv D; Sun X
    Sci Rep; 2023 Nov; 13(1):19637. PubMed ID: 37949904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the damage characteristics of overburden of mining roof in deeply buried coal seam.
    Long T; Hou E; Xie X; Fan Z; Tan E
    Sci Rep; 2022 Jul; 12(1):11141. PubMed ID: 35778594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of broken rock in shallow gobs for mitigating mining-induced water inrush disaster risks and environmental damage: Experimental study and permeability model.
    Miao K; Tu S; Wang Y; Li J; Zhao H; Guo B
    Sci Total Environ; 2023 Dec; 903():166812. PubMed ID: 37673245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The J
    Chen D; Li Z; Xie S; Wang Z; Jiang Z; Jia Q; Wang Y
    Sci Rep; 2023 Oct; 13(1):17569. PubMed ID: 37845227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on a Space-Time Continuous Sensing System for Overburden Deformation and Failure during Coal Mining.
    Cheng G; Wang Z; Shi B; Zhu W; Li T
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.