These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 36743071)

  • 1. Spheroid Engineering in Microfluidic Devices.
    Tevlek A; Kecili S; Ozcelik OS; Kulah H; Tekin HC
    ACS Omega; 2023 Jan; 8(4):3630-3649. PubMed ID: 36743071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of VEGF-A secretion from tumor cells under cellular stresses in conventional monolayer culture and microfluidic three-dimensional spheroid models.
    Sarkar S; Peng CC; Tung YC
    PLoS One; 2020; 15(11):e0240833. PubMed ID: 33175874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printed Solutions for Spheroid Engineering and Cancer Research.
    Butelmann T; Gu Y; Li A; Tribukait-Riemenschneider F; Hoffmann J; Molazem A; Jaeger E; Pellegrini D; Forget A; Shastri VP
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array.
    Su C; Chuah YJ; Ong HB; Tay HM; Dalan R; Hou HW
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cutting and Bonding Parafilm
    Fu JJ; Lv XH; Wang LX; He X; Li Y; Yu L; Li CM
    Cell Mol Bioeng; 2021 Apr; 14(2):187-199. PubMed ID: 33868499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous 2D and 3D cell culture array for multicellular geometry, drug discovery and tumor microenvironment reconstruction.
    Li S; Yang K; Chen X; Zhu X; Zhou H; Li P; Chen Y; Jiang Y; Li T; Qin X; Yang H; Wu C; Ji B; You F; Liu Y
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34407511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in spheroid-based microfluidic models to mimic the tumour microenvironment.
    Ro J; Kim J; Cho YK
    Analyst; 2022 May; 147(10):2023-2034. PubMed ID: 35485712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator.
    Lee Y; Chen Z; Lim W; Cho H; Park S
    Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures.
    Bourn MD; Batchelor DVB; Ingram N; McLaughlan JR; Coletta PL; Evans SD; Peyman SA
    J Control Release; 2020 Oct; 326():13-24. PubMed ID: 32562855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital microfluidics for spheroid-based invasion assays.
    Bender BF; Aijian AP; Garrell RL
    Lab Chip; 2016 Apr; 16(8):1505-13. PubMed ID: 27020962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic spheroid-on-a-chip: Fabrication and characterization of a spheroid-based
    AlShmmari SK; Fardous RS; Shinwari Z; Cialla-May D; Popp J; Ramadan Q; Zourob M
    Biomicrofluidics; 2024 May; 18(3):034105. PubMed ID: 38817733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids.
    Hill L; Bruns J; Zustiak SP
    Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.
    Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ
    Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput acoustofluidic fabrication of tumor spheroids.
    Chen B; Wu Y; Ao Z; Cai H; Nunez A; Liu Y; Foley J; Nephew K; Lu X; Guo F
    Lab Chip; 2019 May; 19(10):1755-1763. PubMed ID: 30918934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis.
    Shrestha S; Lekkala VKR; Acharya P; Siddhpura D; Lee MY
    Essays Biochem; 2021 Aug; 65(3):481-489. PubMed ID: 34296737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.