These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36743300)

  • 1. Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods.
    Barron C; Di Fazio G; Kenny S; O'Toole S; O'Reilly R; Zerulla D
    Beilstein J Nanotechnol; 2023; 14():110-122. PubMed ID: 36743300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible plasmonic modulators induced by the thermomechanical effect.
    Zou Q; Liu W; Shen Y; Jin C
    Nanoscale; 2019 Jun; 11(24):11437-11444. PubMed ID: 31184353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alloying: A Platform for Metallic Materials with On-Demand Optical Response.
    Rebello Sousa Dias M; Leite MS
    Acc Chem Res; 2019 Oct; 52(10):2881-2891. PubMed ID: 31305980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and Temporal Nanoscale Plasmonic Heating Quantified by Thermoreflectance.
    Wang D; Koh YR; Kudyshev ZA; Maize K; Kildishev AV; Boltasseva A; Shalaev VM; Shakouri A
    Nano Lett; 2019 Jun; 19(6):3796-3803. PubMed ID: 31067061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heating effects in tip-enhanced optical microscopy.
    Downes A; Salter D; Elfick A
    Opt Express; 2006 Jun; 14(12):5216-22. PubMed ID: 19516687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct temperature mapping of nanoscale plasmonic devices.
    Desiatov B; Goykhman I; Levy U
    Nano Lett; 2014 Feb; 14(2):648-52. PubMed ID: 24422562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon response evaluation based on image-derived arbitrary nanostructures.
    Trautmann S; Richard-Lacroix M; Dathe A; Schneidewind H; Dellith J; Fritzsche W; Deckert V
    Nanoscale; 2018 May; 10(21):9830-9839. PubMed ID: 29774907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors.
    Yin A; He Q; Lin Z; Luo L; Liu Y; Yang S; Wu H; Ding M; Huang Y; Duan X
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):583-7. PubMed ID: 26783058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Layer as a Localized Temperature Control Element for Surface Plasmonic Resonance-Based Sensors.
    Ganesan S; Maricot S; Robillard JF; Okada E; Bakouche MT; Hay L; Vilcot JP
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33805691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-plasmonic 2 × 2 channel-routing switch arranged on a thin-Si-doped metal/insulator/semiconductor/metal structure.
    Moazzam MK; Kaatuzian H
    Appl Opt; 2016 Jan; 55(3):565-75. PubMed ID: 26835932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning.
    Miscuglio M; Borys NJ; Spirito D; Martín-García B; Zaccaria RP; Weber-Bargioni A; Schuck PJ; Krahne R
    ACS Nano; 2019 May; 13(5):5646-5654. PubMed ID: 31021592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Plasmonics and Active Chiral Plasmonics through Orientation-Dependent Multipolar Interactions.
    Stevenson PR; Du M; Cherqui C; Bourgeois MR; Rodriguez K; Neff JR; Abreu E; Meiler IM; Tamma VA; Apkarian VA; Schatz GC; Yuen-Zhou J; Shumaker-Parry JS
    ACS Nano; 2020 Sep; 14(9):11518-11532. PubMed ID: 32790353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Probe With Circular Nano-Moat for far-Field Free Nanofocusing.
    Zhang M; Wang T
    Nanoscale Res Lett; 2016 Dec; 11(1):421. PubMed ID: 27654281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrothermal Control of Graphene Plasmon-Phonon Polaritons.
    Guo Q; Guinea F; Deng B; Sarpkaya I; Li C; Chen C; Ling X; Kong J; Xia F
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28621022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.
    Grosse KL; Pop E; King WP
    Rev Sci Instrum; 2014 Sep; 85(9):094904. PubMed ID: 25273761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochromic response and control of plasmonic metal nanoparticles.
    Kim Y; Cha S; Kim JH; Oh JW; Nam JM
    Nanoscale; 2021 Jun; 13(21):9541-9552. PubMed ID: 34019053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Far-field measurement of ultra-small plasmonic mode volume.
    Zhang S; Park YS; Liu Y; Zentgraf T; Zhang X
    Opt Express; 2010 Mar; 18(6):6048-55. PubMed ID: 20389625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration.
    Borah R; Ninakanti R; Bals S; Verbruggen SW
    Sci Rep; 2022 Sep; 12(1):15738. PubMed ID: 36130995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity.
    Denkova D; Verellen N; Silhanek AV; Van Dorpe P; Moshchalkov VV
    Small; 2014 May; 10(10):1959-66. PubMed ID: 24590985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.