BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 36743580)

  • 1. Carotenoid metabolism: New insights and synthetic approaches.
    Stra A; Almarwaey LO; Alagoz Y; Moreno JC; Al-Babili S
    Front Plant Sci; 2022; 13():1072061. PubMed ID: 36743580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carotenoid Metabolism in Plants: The Role of Plastids.
    Sun T; Yuan H; Cao H; Yazdani M; Tadmor Y; Li L
    Mol Plant; 2018 Jan; 11(1):58-74. PubMed ID: 28958604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast-to-chromoplast transition envisions provitamin A biofortification in green vegetables.
    Dhami N
    Plant Cell Rep; 2021 May; 40(5):799-804. PubMed ID: 33754204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An engineered extraplastidial pathway for carotenoid biofortification of leaves.
    Andersen TB; Llorente B; Morelli L; Torres-Montilla S; Bordanaba-Florit G; Espinosa FA; Rodriguez-Goberna MR; Campos N; Olmedilla-Alonso B; Llansola-Portoles MJ; Pascal AA; Rodriguez-Concepcion M
    Plant Biotechnol J; 2021 May; 19(5):1008-1021. PubMed ID: 33314563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient expression systems to rewire plant carotenoid metabolism.
    Rodriguez-Concepcion M; Daròs JA
    Curr Opin Plant Biol; 2022 Apr; 66():102190. PubMed ID: 35183926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open avenues for carotenoid biofortification of plant tissues.
    Morelli L; Rodriguez-Concepcion M
    Plant Commun; 2023 Jan; 4(1):100466. PubMed ID: 36303429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apocarotenoids Involved in Plant Development and Stress Response.
    Felemban A; Braguy J; Zurbriggen MD; Al-Babili S
    Front Plant Sci; 2019; 10():1168. PubMed ID: 31611895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid biofortification in crop plants: citius, altius, fortius.
    Zheng X; Giuliano G; Al-Babili S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Nov; 1865(11):158664. PubMed ID: 32068105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.
    Apel W; Bock R
    Plant Physiol; 2009 Sep; 151(1):59-66. PubMed ID: 19587100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making extra room for carotenoids in plant cells: New opportunities for biofortification.
    Torres-Montilla S; Rodriguez-Concepcion M
    Prog Lipid Res; 2021 Nov; 84():101128. PubMed ID: 34530006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways for Carotenoid Biosynthesis, Degradation, and Storage.
    Sun T; Tadmor Y; Li L
    Methods Mol Biol; 2020; 2083():3-23. PubMed ID: 31745909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco.
    Moreno JC; Mi J; Agrawal S; Kössler S; Turečková V; Tarkowská D; Thiele W; Al-Babili S; Bock R; Schöttler MA
    Plant J; 2020 Sep; 103(6):1967-1984. PubMed ID: 32623777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant apocarotenoids: from retrograde signaling to interspecific communication.
    Moreno JC; Mi J; Alagoz Y; Al-Babili S
    Plant J; 2021 Jan; 105(2):351-375. PubMed ID: 33258195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and molecular basis of carotenoid metabolism in cereals.
    Niaz M; Zhang B; Zhang Y; Yan X; Yuan M; Cheng Y; Lv G; Fadlalla T; Zhao L; Sun C; Chen F
    Theor Appl Genet; 2023 Mar; 136(3):63. PubMed ID: 36939900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects and progress in the production of valuable carotenoids: Insights from metabolic engineering, synthetic biology, and computational approaches.
    Sankari M; Rao PR; Hemachandran H; Pullela PK; Doss C GP; Tayubi IA; Subramanian B; Gothandam KM; Singh P; Ramamoorthy S
    J Biotechnol; 2018 Jan; 266():89-101. PubMed ID: 29247672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apocarotenoids: A New Carotenoid-Derived Pathway.
    Beltran JC; Stange C
    Subcell Biochem; 2016; 79():239-72. PubMed ID: 27485225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana.
    Meier S; Tzfadia O; Vallabhaneni R; Gehring C; Wurtzel ET
    BMC Syst Biol; 2011 May; 5():77. PubMed ID: 21595952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato.
    Mi J; Vallarino JG; Petřík I; Novák O; Correa SM; Chodasiewicz M; Havaux M; Rodriguez-Concepcion M; Al-Babili S; Fernie AR; Skirycz A; Moreno JC
    Metab Eng; 2022 Mar; 70():166-180. PubMed ID: 35031492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastids and Carotenoid Accumulation.
    Li L; Yuan H; Zeng Y; Xu Q
    Subcell Biochem; 2016; 79():273-93. PubMed ID: 27485226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development.
    Llorente B; Torres-Montilla S; Morelli L; Florez-Sarasa I; Matus JT; Ezquerro M; D'Andrea L; Houhou F; Majer E; Picó B; Cebolla J; Troncoso A; Fernie AR; Daròs JA; Rodriguez-Concepcion M
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21796-21803. PubMed ID: 32817419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.