These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3674380)

  • 1. Reversed-phase and hydrophobic-interaction high-performance liquid chromatography of elapid cardiotoxins.
    Osthoff G; Louw AI; Visser L
    Anal Biochem; 1987 Aug; 164(2):315-9. PubMed ID: 3674380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between the surface hydrophobicities and elution orders of elapid neurotoxins and cardiotoxins on hydrophobic-interaction high-performance liquid chromatography.
    Osthoff G; Louw AI; Reinecke CJ
    Toxicon; 1988; 26(5):475-83. PubMed ID: 3188053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of cardiotoxins (cytotoxins) from the venoms of Naja naja and Naja naja atra by reversed-phase high-performance liquid chromatography.
    Kaneda N; Hayashi K
    J Chromatogr; 1983 Dec; 281():389-92. PubMed ID: 6668340
    [No Abstract]   [Full Text] [Related]  

  • 4. Differing stabilities of snake venom cardiotoxins in acidic aqueous acetonitrile.
    Osthoff G
    Int J Biochem; 1990; 22(1):7-9. PubMed ID: 2328821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and pharmacological properties of cardiotoxins isolated from cobra venom.
    Hider RC; Khader F
    Toxicon; 1982; 20(1):175-9. PubMed ID: 7080031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation and structure-function studies of Taiwan cobra cardiotoxins.
    Lin SR; Chang LS; Chang KL
    J Protein Chem; 2002 Feb; 21(2):81-6. PubMed ID: 11934278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of erythrocyte hemolysis kinetics in the purification of complex cardiotoxin mixtures.
    Zusman N; Cafmeyer N; Hudson RA
    Toxicon; 1982; 20(2):517-20. PubMed ID: 7080058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobra cardiotoxins. Purification, effects on skeletal muscle and structure/activity relationships [published errtum appears in Eur J Biochem 1988 Feb 1;171(3):727].
    Hodges SJ; Agbaji AS; Harvey AL; Hider RC
    Eur J Biochem; 1987 Jun; 165(2):373-83. PubMed ID: 3595595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence characterization of cardiotoxins from Taiwan cobra: isolation of a new isoform.
    Hung CC; Wu SH; Chiou SH
    Biochem Mol Biol Int; 1993 Dec; 31(6):1031-40. PubMed ID: 8193587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of cationic residues in cytolytic activity: modification of lysine residues in the cardiotoxin from Naja nigricollis venom and correlation between cytolytic and antiplatelet activity.
    Kini RM; Evans HJ
    Biochemistry; 1989 Nov; 28(23):9209-15. PubMed ID: 2513886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of elapidae snake venom components using optimized reverse-phase high-performance liquid chromatographic conditions and screening assays for alpha-neurotoxin and phospholipase A2 activities.
    Bougis PE; Marchot P; Rochat H
    Biochemistry; 1986 Nov; 25(22):7235-43. PubMed ID: 3801413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiotoxins from the venom of Malayan cobra (Naja naja sputatrix).
    Tan NH
    Arch Biochem Biophys; 1982 Oct; 218(1):51-8. PubMed ID: 7149742
    [No Abstract]   [Full Text] [Related]  

  • 13. Circular dichroic spectra of elapid cardiotoxins.
    Grognet JM; Ménez A; Drake A; Hayashi K; Morrison IE; Hider RC
    Eur J Biochem; 1988 Mar; 172(2):383-8. PubMed ID: 3350004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action.
    Patel HV; Vyas AA; Vyas KA; Liu YS; Chiang CM; Chi LM; Wu Wg
    J Biol Chem; 1997 Jan; 272(3):1484-92. PubMed ID: 8999818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conformation of cardiotoxins and neurotoxins from snake venoms.
    Visser L; Louw AI
    Biochim Biophys Acta; 1978 Mar; 533(1):80-9. PubMed ID: 638198
    [No Abstract]   [Full Text] [Related]  

  • 16. Unfolding processes of small globular proteins: the two-state vs multi-state model.
    Gałat A
    Int J Biochem; 1983; 15(5):715-9. PubMed ID: 6862085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Six isoforms of cardiotoxin in malayan spitting cobra (Naja naja sputatrix) venom: cloning and characterization of cDNAs.
    Jeyaseelan K; Armugam A; Lachumanan R; Tan CH; Tan NH
    Biochim Biophys Acta; 1998 Apr; 1380(2):209-22. PubMed ID: 9565688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation of snake toxic polypeptides studied by a method of prediction and circular dichroism.
    Menez A; Langlet G; Tamiya N; Fromageot P
    Biochimie; 1978 Sep; 60(5):505-16. PubMed ID: 698289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli.
    Kumar TK; Yang PW; Lin SH; Wu CY; Lei B; Lo SJ; Tu SC; Yu C
    Biochem Biophys Res Commun; 1996 Feb; 219(2):450-6. PubMed ID: 8605008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations.
    Gorai B; Sivaraman T
    Int J Biol Macromol; 2017 Feb; 95():1022-1036. PubMed ID: 27984143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.