BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36744011)

  • 1. Rehabilitation enhances epothilone-induced locomotor recovery after spinal cord injury.
    Griffin JM; Hingorani Jai Prakash S; Bockemühl T; Benner JM; Schaffran B; Moreno-Manzano V; Büschges A; Bradke F
    Brain Commun; 2023; 5(1):fcad005. PubMed ID: 36744011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Microtubule-Modulating Drug Epothilone D Alters Dendritic Spine Morphology in a Mouse Model of Mild Traumatic Brain Injury.
    Chuckowree JA; Zhu Z; Brizuela M; Lee KM; Blizzard CA; Dickson TC
    Front Cell Neurosci; 2018; 12():223. PubMed ID: 30104961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total Synthesis of an Epothilone Analogue based on the Amide‒Triazole Bioisosterism.
    Colombo E; Coppini DA; Borsoi S; Fasano V; Bucci R; Bonato F; Bonandi E; Vasile F; Pieraccini S; Passarella D
    Chempluschem; 2024 Jun; ():e202400413. PubMed ID: 38924276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions.
    Shafqat A; Albalkhi I; Magableh HM; Saleh T; Alkattan K; Yaqinuddin A
    Front Cell Neurosci; 2023; 17():1180825. PubMed ID: 37293626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord injury: molecular mechanisms and therapeutic interventions.
    Hu X; Xu W; Ren Y; Wang Z; He X; Huang R; Ma B; Zhao J; Zhu R; Cheng L
    Signal Transduct Target Ther; 2023 Jun; 8(1):245. PubMed ID: 37357239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving CNS axon growth and regeneration research into human model systems.
    Lear BP; Moore DL
    Front Neurosci; 2023; 17():1198041. PubMed ID: 37425013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroplasticity and regeneration after spinal cord injury.
    Punjani N; Deska-Gauthier D; Hachem LD; Abramian M; Fehlings MG
    N Am Spine Soc J; 2023 Sep; 15():100235. PubMed ID: 37416090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial progenitor cell-derived exosomes promote anti-inflammatory macrophages via SOCS3/JAK2/STAT3 axis and improve the outcome of spinal cord injury.
    Yuan F; Peng W; Yang Y; Xu J; Liu Y; Xie Y; Huang T; Shi C; Ding Y; Li C; Qin T; Xie S; Zhu F; Lu H; Huang J; Hu J
    J Neuroinflammation; 2023 Jun; 20(1):156. PubMed ID: 37391774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction as a target in spinal cord injury: intimate correlation between pathological processes and therapeutic approaches.
    Schmidt J; Quintá HR
    Neural Regen Res; 2023 Oct; 18(10):2161-2166. PubMed ID: 37056124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in molecular therapies for targeting pathophysiology in spinal cord injury.
    Kim HN; McCrea MR; Li S
    Expert Opin Ther Targets; 2023 Mar; 27(3):171-187. PubMed ID: 37017093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-Induced Activation of GPR110 (ADGRF1) to Improve Visual Function Impaired by Optic Nerve Injury.
    Kwon HS; Kevala K; Qian H; Abu-Asab M; Patnaik S; Marugan J; Kim HY
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Advancements in Spinal Cord Injury Research-Glial Scar Formation and Neural Regeneration.
    Clifford T; Finkel Z; Rodriguez B; Joseph A; Cai L
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the mechanisms under Zuogui Pill's treatment of ischemic stroke through network pharmacology and
    Li L; Liu Y; Zheng Y; Zhu J; Wu D; Yan X; Li C; Wu M; Li W
    Front Pharmacol; 2023; 14():1153478. PubMed ID: 37426810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation RNA sequencing elucidates transcriptomic signatures of pathophysiologic nerve regeneration.
    Warner WS; Stubben C; Yeoh S; Light AR; Mahan MA
    Sci Rep; 2023 May; 13(1):8856. PubMed ID: 37258605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen for neural tissue engineering: Materials, strategies, and challenges.
    Huang WH; Ding SL; Zhao XY; Li K; Guo HT; Zhang MZ; Gu Q
    Mater Today Bio; 2023 Jun; 20():100639. PubMed ID: 37197743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epothilones as Natural Compounds for Novel Anticancer Drugs Development.
    Villegas C; González-Chavarría I; Burgos V; Iturra-Beiza H; Ulrich H; Paz C
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges.
    Xia Y; Zhu J; Yang R; Wang H; Li Y; Fu C
    Front Immunol; 2023; 14():1141601. PubMed ID: 36911700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain.
    Vinopal S; Dupraz S; Alfadil E; Pietralla T; Bendre S; Stiess M; Falk S; Camargo Ortega G; Maghelli N; Tolić IM; Smejkal J; Götz M; Bradke F
    Neuron; 2023 Apr; 111(8):1241-1263.e16. PubMed ID: 36796357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury.
    Suzuki H; Imajo Y; Funaba M; Ikeda H; Nishida N; Sakai T
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do Pharmacological Treatments Act in Collaboration with Rehabilitation in Spinal Cord Injury Treatment? A Review of Preclinical Studies.
    Tashiro S; Shibata S; Nagoshi N; Zhang L; Yamada S; Tsuji T; Nakamura M; Okano H
    Cells; 2024 Feb; 13(5):. PubMed ID: 38474376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.