These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36744289)

  • 21. Photoelectrochemical Enhancement of Graphene@WS
    Nasr M; Benhamou L; Kotbi A; Rajput NS; Campos A; Lahmar AI; Hoummada K; Kaja K; El Marssi M; Jouiad M
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of WO
    Zhang N; Li H; Yao B; Liu S; Ren J; Wang Y; Fang Z; Wu R; Wei S
    Dalton Trans; 2023 May; 52(19):6284-6289. PubMed ID: 37083108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of morphology and crystal structure on the photocatalytic and photoelectrochemical performances of WO
    Li L; Li J; Kim BH; Huang J
    RSC Adv; 2024 Jan; 14(3):2080-2087. PubMed ID: 38196906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and Optical Properties of Tungsten Disulfide Nanoscale Films Grown by Sulfurization from W and WO
    Gultom P; Chiang JY; Huang TT; Lee JC; Su SH; Huang JA
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The optimization of surface morphology of Au nanoparticles on WO
    Jun J; Ju S; Moon S; Son S; Huh D; Liu Y; Kim K; Lee H
    Nanotechnology; 2020 May; 31(20):204003. PubMed ID: 31995544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterostructured WO
    Alruwaili M; Roy A; Alhabradi M; Yang X; Chang H; Tahir AA
    Heliyon; 2024 Feb; 10(3):e25446. PubMed ID: 38322971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-Step Rapid and Scalable Flame Synthesis of Efficient WO
    Chen H; Bo R; Tran-Phu T; Liu G; Tricoli A
    Chempluschem; 2018 Jul; 83(7):569-576. PubMed ID: 31950641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation.
    Ma M; Shi X; Zhang K; Kwon S; Li P; Kim JK; Phu TT; Yi GR; Park JH
    Nanoscale; 2016 Feb; 8(6):3474-81. PubMed ID: 26797394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array.
    Xu F; Yao Y; Bai D; Xu R; Mei J; Wu D; Gao Z; Jiang K
    J Colloid Interface Sci; 2015 Nov; 458():194-9. PubMed ID: 26218199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-Scale Tunable 3D Self-Supporting WO
    Cai M; Fan P; Long J; Han J; Lin Y; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2017 May; 9(21):17856-17864. PubMed ID: 28485917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasonic processing of WO
    Jin Lee D; Mohan Kumar G; Sekar S; Chang Jeon H; Young Kim D; Ilanchezhiyan P
    Ultrason Sonochem; 2023 Dec; 101():106681. PubMed ID: 37952468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Core-shell photoanode developed by atomic layer deposition of Bi₂O₃ on Si nanowires for enhanced photoelectrochemical water splitting.
    Weng B; Xu F; Xu J
    Nanotechnology; 2014 Nov; 25(45):455402. PubMed ID: 25338216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of inorganic-organic 2D/2D WO₃/g-C₃N₄ nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater.
    Li Y; Wei X; Yan X; Cai J; Zhou A; Yang M; Liu K
    Phys Chem Chem Phys; 2016 Apr; 18(15):10255-61. PubMed ID: 27022001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insight into Charge Separation in WO
    Chae SY; Lee CS; Jung H; Joo OS; Min BK; Kim JH; Hwang YJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19780-19790. PubMed ID: 28530789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. WO
    Ma Z; Song K; Wang L; Gao F; Tang B; Hou H; Yang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):889-897. PubMed ID: 30560657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defected ZnWO
    Cui Y; Pan L; Chen Y; Afzal N; Ullah S; Liu D; Wang L; Zhang X; Zou JJ
    RSC Adv; 2019 Feb; 9(10):5492-5500. PubMed ID: 35515934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bi nanoparticles modified the WO
    Bai S; Fang Y; Zhao Y; Feng Y; Luo R; Li D; Chen A
    J Colloid Interface Sci; 2023 Sep; 646():745-752. PubMed ID: 37229992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increase in Photocurrent Density of WO
    Puntsagdorj S; Koirala AR; Gombovanjil J; Khanh NN; Sung SD; Lee WI; Yoon KB
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31838-31850. PubMed ID: 35792885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen Vacancy-Enhanced Photoelectrochemical Water Splitting of WO
    Lin W; Yu Y; Fang Y; Liu J; Li X; Wang J; Zhang Y; Wang C; Wang L; Yu X
    Langmuir; 2021 Jun; 37(21):6490-6497. PubMed ID: 34009993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.