These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 36744361)
1. Deep learning image reconstruction for quality assessment of iodine concentration in computed tomography: A phantom study. Jeon PH; Lee CL J Xray Sci Technol; 2023; 31(2):409-422. PubMed ID: 36744361 [TBL] [Abstract][Full Text] [Related]
2. A comparative analysis of deep learning and hybrid iterative reconstruction algorithms with contrast-enhancement-boost post-processing on the image quality of indirect computed tomography venography of the lower extremities. Du H; Sui X; Zhao R; Wang J; Ming Y; Piao S; Wang J; Ma Z; Wang Y; Song L; Song W BMC Med Imaging; 2024 Jul; 24(1):163. PubMed ID: 38956583 [TBL] [Abstract][Full Text] [Related]
3. Deep learning reconstruction improves radiomics feature stability and discriminative power in abdominal CT imaging: a phantom study. Michallek F; Genske U; Niehues SM; Hamm B; Jahnke P Eur Radiol; 2022 Jul; 32(7):4587-4595. PubMed ID: 35174400 [TBL] [Abstract][Full Text] [Related]
4. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. Singh R; Digumarthy SR; Muse VV; Kambadakone AR; Blake MA; Tabari A; Hoi Y; Akino N; Angel E; Madan R; Kalra MK AJR Am J Roentgenol; 2020 Mar; 214(3):566-573. PubMed ID: 31967501 [No Abstract] [Full Text] [Related]
5. Performance of adaptive iterative dose reduction 3D integrated with automatic tube current modulation in radiation dose and image noise reduction compared with filtered-back projection for 80-kVp abdominal CT: Anthropomorphic phantom and patient study. Chen CM; Lin YY; Hsu MY; Hung CF; Liao YL; Tsai HY Eur J Radiol; 2016 Sep; 85(9):1666-72. PubMed ID: 27501904 [TBL] [Abstract][Full Text] [Related]
6. Effect of a new deep learning image reconstruction algorithm for abdominal computed tomography imaging on image quality and dose reduction compared with two iterative reconstruction algorithms: a phantom study. Greffier J; Dabli D; Hamard A; Belaouni A; Akessoul P; Frandon J; Beregi JP Quant Imaging Med Surg; 2022 Jan; 12(1):229-243. PubMed ID: 34993074 [TBL] [Abstract][Full Text] [Related]
7. Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: A phantom study. Greffier J; Dabli D; Frandon J; Hamard A; Belaouni A; Akessoul P; Fuamba Y; Le Roy J; Guiu B; Beregi JP Med Phys; 2021 Oct; 48(10):5743-5755. PubMed ID: 34418110 [TBL] [Abstract][Full Text] [Related]
8. Adaptive iterative dose reduction algorithm in CT: effect on image quality compared with filtered back projection in body phantoms of different sizes. Kim M; Lee JM; Yoon JH; Son H; Choi JW; Han JK; Choi BI Korean J Radiol; 2014; 15(2):195-204. PubMed ID: 24644409 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning-Based Versus Iterative Image Reconstruction for Unenhanced Brain CT: A Quantitative Comparison of Image Quality. Cozzi A; Cè M; De Padova G; Libri D; Caldarelli N; Zucconi F; Oliva G; Cellina M Tomography; 2023 Aug; 9(5):1629-1637. PubMed ID: 37736983 [TBL] [Abstract][Full Text] [Related]
10. Determining the radiation dose reduction potential for coronary calcium scanning with computed tomography: an anthropomorphic phantom study comparing filtered backprojection and the adaptive iterative dose reduction algorithm for image reconstruction. Blobel J; Mews J; Schuijf JD; Overlaet W Invest Radiol; 2013 Dec; 48(12):857-62. PubMed ID: 23917328 [TBL] [Abstract][Full Text] [Related]
11. Low-Dose Pelvic Computed Tomography Using Adaptive Iterative Dose Reduction 3-Dimensional Algorithm: A Phantom Study. Onishi H; Kockelkoren R; Kim T; Hori M; Nakamoto A; Tsuboyama T; Sakane M; Tatsumi M; Uranishi A; Tanaka T; Taniguchi A; Enchi Y; Satoh K; Tomiyama N J Comput Assist Tomogr; 2015; 39(4):629-34. PubMed ID: 26125298 [TBL] [Abstract][Full Text] [Related]
12. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data. Greffier J; Frandon J; Si-Mohamed S; Dabli D; Hamard A; Belaouni A; Akessoul P; Besse F; Guiu B; Beregi JP Diagn Interv Imaging; 2022 Jan; 103(1):21-30. PubMed ID: 34493475 [TBL] [Abstract][Full Text] [Related]
13. Effects of contrast enhancement boost postprocessing technique in combination with different reconstruction algorithms on the image quality of abdominal CT angiography. Xu J; Wang S; Wang X; Wang Y; Xue H; Yan J; Xu M; Jin Z Eur J Radiol; 2022 Sep; 154():110388. PubMed ID: 35714492 [TBL] [Abstract][Full Text] [Related]
14. Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction. Otgonbaatar C; Ryu JK; Shin J; Woo JY; Seo JW; Shim H; Hwang DH Korean J Radiol; 2022 Nov; 23(11):1044-1054. PubMed ID: 36196766 [TBL] [Abstract][Full Text] [Related]
15. Adaptive iterative dose reduction 3D (AIDR 3D) vs. filtered back projection: radiation dose reduction capabilities of wide volume and helical scanning techniques on area-detector CT in a chest phantom study. Seki S; Koyama H; Ohno Y; Matsumoto S; Inokawa H; Sugihara N; Sugimura K Acta Radiol; 2016 Jun; 57(6):684-90. PubMed ID: 26339037 [TBL] [Abstract][Full Text] [Related]
16. [Effect of Deep Learning-based Contrast-enhanced CT Image Reconstruction on the Image Quality of the Biliary System]. Wang ST; Xu J; Wang X; Wang Y; Xue HD; Jin ZY Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2022 Aug; 44(4):614-620. PubMed ID: 36065694 [TBL] [Abstract][Full Text] [Related]
17. Impact of adaptive iterative dose reduction (AIDR) 3D on low-dose abdominal CT: comparison with routine-dose CT using filtered back projection. Matsuki M; Murakami T; Juri H; Yoshikawa S; Narumi Y Acta Radiol; 2013 Oct; 54(8):869-75. PubMed ID: 23761554 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional CT imaging in extensor tendons using deep learning reconstruction: optimal reconstruction parameters and the influence of dose. Tsuboi K; Kanbe T; Matsushima H; Ohtani Y; Tanikawa K; Kaneko M Phys Eng Sci Med; 2023 Dec; 46(4):1659-1666. PubMed ID: 37721683 [TBL] [Abstract][Full Text] [Related]
19. Task-based assessment of neck CT protocols using patient-mimicking phantoms-effects of protocol parameters on dose and diagnostic performance. Jahnke P; Conzelmann J; Genske U; Nunninger M; Scheel M; Hamm B; Diekhoff T Eur Radiol; 2021 May; 31(5):3177-3186. PubMed ID: 33151393 [TBL] [Abstract][Full Text] [Related]
20. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis. van Stiphout JA; Driessen J; Koetzier LR; Ruules LB; Willemink MJ; Heemskerk JWT; van der Molen AJ Eur Radiol; 2022 May; 32(5):2921-2929. PubMed ID: 34913104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]