BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36744506)

  • 1. Structure, energetics and dynamics in crowded amino acid solutions: a molecular dynamics study.
    Panigrahy S; Sahu R; Reddy SK; Nayar D
    Phys Chem Chem Phys; 2023 Feb; 25(7):5430-5442. PubMed ID: 36744506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic Simulation of Lysozyme in Solutions Crowded by Tetraethylene Glycol: Force Field Dependence.
    Liu D; Qiu Y; Li Q; Zhang H
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization.
    Miller MS; Lay WK; Elcock AH
    J Phys Chem B; 2016 Aug; 120(33):8217-29. PubMed ID: 27052117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein crowding affects hydration structure and dynamics.
    Harada R; Sugita Y; Feig M
    J Am Chem Soc; 2012 Mar; 134(10):4842-9. PubMed ID: 22352398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reparametrization of Protein Force Field Nonbonded Interactions Guided by Osmotic Coefficient Measurements from Molecular Dynamics Simulations.
    Miller MS; Lay WK; Li S; Hacker WC; An J; Ren J; Elcock AH
    J Chem Theory Comput; 2017 Apr; 13(4):1812-1826. PubMed ID: 28296391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models.
    Zhang H; Yin C; Jiang Y; van der Spoel D
    J Chem Inf Model; 2018 May; 58(5):1037-1052. PubMed ID: 29648448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of highly crowded amino acid solutions: comparisons of eight different force field combinations with experiment and with each other.
    Andrews CT; Elcock AH
    J Chem Theory Comput; 2013 Oct; 9(10):. PubMed ID: 24409104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized OPEP Force Field for Simulation of Crowded Protein Solutions.
    Timr S; Melchionna S; Derreumaux P; Sterpone F
    J Phys Chem B; 2023 Apr; 127(16):3616-3623. PubMed ID: 37071827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified Protein-Water Interactions in CHARMM36m for Thermodynamics and Kinetics of Proteins in Dilute and Crowded Solutions.
    Matsubara D; Kasahara K; Dokainish HM; Oshima H; Sugita Y
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab Initio Molecular Dynamics Study of Aqueous Solutions of Magnesium and Calcium Nitrates: Hydration Shell Structure, Dynamics and Vibrational Echo Spectroscopy.
    Das B; Chandra A
    J Phys Chem B; 2022 Jan; 126(2):528-544. PubMed ID: 35001626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reparameterization of Solute-Solute Interactions for Amino Acid-Sugar Systems Using Isopiestic Osmotic Pressure Molecular Dynamics Simulations.
    Lay WK; Miller MS; Elcock AH
    J Chem Theory Comput; 2017 May; 13(5):1874-1882. PubMed ID: 28437100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular dynamics study of the dielectric properties of aqueous solutions of alanine and alanine dipeptide.
    Boresch S; Willensdorfer M; Steinhauser O
    J Chem Phys; 2004 Feb; 120(7):3333-47. PubMed ID: 15268487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential local ordering of mixed crowders determines effective size and stability of ss-DNA capped gold nanoparticle.
    Panigrahy S; Nayar D
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38165098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing solute-water van der Waals interactions to reproduce solvation free energies.
    Nerenberg PS; Jo B; So C; Tripathy A; Head-Gordon T
    J Phys Chem B; 2012 Apr; 116(15):4524-34. PubMed ID: 22443635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding and the importance of proper hydration for the structure and dynamics of protein solutions.
    Honegger P; Schmollngruber M; Steinhauser O
    Phys Chem Chem Phys; 2018 Jul; 20(29):19581-19594. PubMed ID: 30009286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes.
    Teng X; Huang Q; Dharmawardhana CC; Ichiye T
    J Chem Phys; 2018 Jun; 148(22):222827. PubMed ID: 29907024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz absorption of dilute aqueous solutions.
    Heyden M; Tobias DJ; Matyushov DV
    J Chem Phys; 2012 Dec; 137(23):235103. PubMed ID: 23267504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulations of 441 Two-Residue Peptides in Aqueous Solution: Conformational Preferences and Neighboring Residue Effects with the Amber ff99SB-ildn-NMR Force Field.
    Li S; Andrews CT; Frembgen-Kesner T; Miller MS; Siemonsma SL; Collingsworth TD; Rockafellow IT; Ngo NA; Campbell BA; Brown RF; Guo C; Schrodt M; Liu YT; Elcock AH
    J Chem Theory Comput; 2015 Mar; 11(3):1315-29. PubMed ID: 26579777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarizable molecular dynamics simulations of aqueous dipeptides.
    Kucukkal TG; Stuart SJ
    J Phys Chem B; 2012 Aug; 116(30):8733-40. PubMed ID: 22747103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.