These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36744695)

  • 1. Deep learning-based automatic pipeline for quantitative assessment of thigh muscle morphology and fatty infiltration.
    Gaj S; Eck BL; Xie D; Lartey R; Lo C; Zaylor W; Yang M; Nakamura K; Winalski CS; Spindler KP; Li X
    Magn Reson Med; 2023 Jun; 89(6):2441-2455. PubMed ID: 36744695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches.
    Hostin MA; Ogier AC; Michel CP; Le Fur Y; Guye M; Attarian S; Fortanier E; Bellemare ME; Bendahan D
    J Magn Reson Imaging; 2023 Dec; 58(6):1826-1835. PubMed ID: 37025028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain.
    Kemnitz J; Baumgartner CF; Eckstein F; Chaudhari A; Ruhdorfer A; Wirth W; Eder SK; Konukoglu E
    MAGMA; 2020 Aug; 33(4):483-493. PubMed ID: 31872357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat-water decomposition MRI.
    Ding J; Cao P; Chang HC; Gao Y; Chan SHS; Vardhanabhuti V
    Insights Imaging; 2020 Nov; 11(1):128. PubMed ID: 33252711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning methods for automatic segmentation of lower leg muscles and bones from MRI scans of children with and without cerebral palsy.
    Zhu J; Bolsterlee B; Chow BVY; Cai C; Herbert RD; Song Y; Meijering E
    NMR Biomed; 2021 Dec; 34(12):e4609. PubMed ID: 34545647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas.
    Kemnitz J; Eckstein F; Culvenor AG; Ruhdorfer A; Dannhauer T; Ring-Dimitriou S; Sänger AM; Wirth W
    MAGMA; 2017 Oct; 30(5):489-503. PubMed ID: 28455629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning for automatic segmentation of thigh and leg muscles.
    Agosti A; Shaqiri E; Paoletti M; Solazzo F; Bergsland N; Colelli G; Savini G; Muzic SI; Santini F; Deligianni X; Diamanti L; Monforte M; Tasca G; Ricci E; Bastianello S; Pichiecchio A
    MAGMA; 2022 Jun; 35(3):467-483. PubMed ID: 34665370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated measurement of fat infiltration in the hip abductors from Dixon magnetic resonance imaging.
    Belzunce MA; Henckel J; Fotiadou A; Di Laura A; Hart A
    Magn Reson Imaging; 2020 Oct; 72():61-70. PubMed ID: 32615150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automation of Quantifying Axonal Loss in Patients with Peripheral Neuropathies through Deep Learning Derived Muscle Fat Fraction.
    Chen Y; Moiseev D; Kong WY; Bezanovski A; Li J
    J Magn Reson Imaging; 2021 May; 53(5):1539-1549. PubMed ID: 33448058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Knowledge-Based Modality-Independent Technique for Concurrent Thigh Muscle Segmentation: Applicable to CT and MR Images.
    Molaie M; Zoroofi RA
    J Digit Imaging; 2020 Oct; 33(5):1122-1135. PubMed ID: 32588159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Vertebral Body Segmentation Based on Deep Learning of Dixon Images for Bone Marrow Fat Fraction Quantification.
    Zhou J; Damasceno PF; Chachad R; Cheung JR; Ballatori A; Lotz JC; Lazar AA; Link TM; Fields AJ; Krug R
    Front Endocrinol (Lausanne); 2020; 11():612. PubMed ID: 32982989
    [No Abstract]   [Full Text] [Related]  

  • 12. Automatic muscle and fat segmentation in the thigh from T1-Weighted MRI.
    Orgiu S; Lafortuna CL; Rastelli F; Cadioli M; Falini A; Rizzo G
    J Magn Reson Imaging; 2016 Mar; 43(3):601-10. PubMed ID: 26268693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise individual muscle segmentation in whole thigh CT scans for sarcopenia assessment using U-net transformer.
    Kim HS; Kim H; Kim S; Cha Y; Kim JT; Kim JW; Ha YC; Yoo JI
    Sci Rep; 2024 Feb; 14(1):3301. PubMed ID: 38331977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter- and intra-observer variability of an anatomical landmark-based, manual segmentation method by MRI for the assessment of skeletal muscle fat content and area in subjects from the general population.
    Kiefer LS; Fabian J; Lorbeer R; Machann J; Storz C; Kraus MS; Wintermeyer E; Schlett C; Roemer F; Nikolaou K; Peters A; Bamberg F
    Br J Radiol; 2018 Sep; 91(1089):20180019. PubMed ID: 29658780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4-5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen.
    Chen T; Su ZH; Liu Z; Wang M; Cui ZF; Zhao L; Yang LJ; Zhang WC; Liu X; Liu J; Tan SY; Li SL; Feng QJ; Pang SM; Lu H
    Orthop Surg; 2022 Sep; 14(9):2256-2264. PubMed ID: 35979964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep generative models for automated muscle segmentation in computed tomography scanning.
    Nishiyama D; Iwasaki H; Taniguchi T; Fukui D; Yamanaka M; Harada T; Yamada H
    PLoS One; 2021; 16(9):e0257371. PubMed ID: 34506602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline.
    Ye Z; Saraf A; Ravipati Y; Hoebers F; Zha Y; Zapaishchykova A; Likitlersuang J; Tishler RB; Schoenfeld JD; Margalit DN; Haddad RI; Mak RH; Naser M; Wahid KA; Sahlsten J; Jaskari J; Kaski K; Mäkitie AA; Fuller CD; Aerts HJWL; Kann BH
    medRxiv; 2023 Mar; ():. PubMed ID: 36945519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+.
    Wang J; Peng Y; Jing S; Han L; Li T; Luo J
    BMC Cancer; 2023 Nov; 23(1):1060. PubMed ID: 37923988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of lower limb muscles from MR images of post-menopausal women based on deep learning and data augmentation.
    Henson WH; Li X; Lin Z; Guo L; Mazzá C; Dall'Ara E
    PLoS One; 2024; 19(4):e0299099. PubMed ID: 38564618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.