These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36745448)

  • 21. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability.
    Liu J; Su R; Wei Y; Yao B; Silva SFCD; Yu Y; Iles-Smith J; Srinivasan K; Rastelli A; Li J; Wang X
    Nat Nanotechnol; 2019 Jun; 14(6):586-593. PubMed ID: 31011221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wavelength-tunable sources of entangled photons interfaced with atomic vapours.
    Trotta R; Martín-Sánchez J; Wildmann JS; Piredda G; Reindl M; Schimpf C; Zallo E; Stroj S; Edlinger J; Rastelli A
    Nat Commun; 2016 Jan; 7():10375. PubMed ID: 26815609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of electrostatic environment on the electrically triggered production of entangled photon pairs from droplet epitaxial quantum dots.
    Ramírez HY; Chou YL; Cheng SJ
    Sci Rep; 2019 Feb; 9(1):1547. PubMed ID: 30733483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Entangled photon pairs from semiconductor quantum dots.
    Akopian N; Lindner NH; Poem E; Berlatzky Y; Avron J; Gershoni D; Gerardot BD; Petroff PM
    Phys Rev Lett; 2006 Apr; 96(13):130501. PubMed ID: 16711973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand.
    Huber D; Reindl M; Covre da Silva SF; Schimpf C; Martín-Sánchez J; Huang H; Piredda G; Edlinger J; Rastelli A; Trotta R
    Phys Rev Lett; 2018 Jul; 121(3):033902. PubMed ID: 30085806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deterministic generation of a cluster state of entangled photons.
    Schwartz I; Cogan D; Schmidgall ER; Don Y; Gantz L; Kenneth O; Lindner NH; Gershoni D
    Science; 2016 Oct; 354(6311):434-437. PubMed ID: 27608669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field.
    Ghali M; Ohtani K; Ohno Y; Ohno H
    Nat Commun; 2012 Feb; 3():661. PubMed ID: 22314357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect.
    Muller A; Fang W; Lawall J; Solomon GS
    Phys Rev Lett; 2009 Nov; 103(21):217402. PubMed ID: 20366067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum interference of identical photons from remote GaAs quantum dots.
    Zhai L; Nguyen GN; Spinnler C; Ritzmann J; Löbl MC; Wieck AD; Ludwig A; Javadi A; Warburton RJ
    Nat Nanotechnol; 2022 Aug; 17(8):829-833. PubMed ID: 35589820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of ultraviolet entangled photons in a semiconductor.
    Edamatsu K; Oohata G; Shimizu R; Itoh T
    Nature; 2004 Sep; 431(7005):167-70. PubMed ID: 15356626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum cryptography with highly entangled photons from semiconductor quantum dots.
    Schimpf C; Reindl M; Huber D; Lehner B; Covre Da Silva SF; Manna S; Vyvlecka M; Walther P; Rastelli A
    Sci Adv; 2021 Apr; 7(16):. PubMed ID: 33853777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signatures of the Optical Stark Effect on Entangled Photon Pairs from Resonantly Pumped Quantum Dots.
    Basso Basset F; Rota MB; Beccaceci M; Krieger TM; Buchinger Q; Neuwirth J; Huet H; Stroj S; Covre da Silva SF; Ronco G; Schimpf C; Höfling S; Huber-Loyola T; Rastelli A; Trotta R
    Phys Rev Lett; 2023 Oct; 131(16):166901. PubMed ID: 37925701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eliminating temporal correlation in quantum-dot entangled photon source by quantum interference.
    Liu RZ; Qiao YK; Zhong HS; Ge ZX; Wang H; Chung TH; Lu CY; Huo YH; Pan JW
    Sci Bull (Beijing); 2023 Apr; 68(8):807-812. PubMed ID: 36990872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna.
    Chen Y; Zopf M; Keil R; Ding F; Schmidt OG
    Nat Commun; 2018 Jul; 9(1):2994. PubMed ID: 30065263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entanglement on demand through time reordering.
    Avron JE; Bisker G; Gershoni D; Lindner NH; Meirom EA; Warburton RJ
    Phys Rev Lett; 2008 Mar; 100(12):120501. PubMed ID: 18517847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An intuitive protocol for polarization-entanglement restoral of quantum dot photon sources with non-vanishing fine-structure splitting.
    Varo S; Juska G; Pelucchi E
    Sci Rep; 2022 Mar; 12(1):4723. PubMed ID: 35304526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deterministic photon pairs and coherent optical control of a single quantum dot.
    Jayakumar H; Predojević A; Huber T; Kauten T; Solomon GS; Weihs G
    Phys Rev Lett; 2013 Mar; 110(13):135505. PubMed ID: 23581338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.
    Salazar LJ; Guzmán DA; Rodríguez FJ; Quiroga L
    Opt Express; 2012 Feb; 20(4):4470-83. PubMed ID: 22418206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays.
    Trotta R; Martín-Sánchez J; Daruka I; Ortix C; Rastelli A
    Phys Rev Lett; 2015 Apr; 114(15):150502. PubMed ID: 25933298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entanglement Swapping with Semiconductor-Generated Photons Violates Bell's Inequality.
    Zopf M; Keil R; Chen Y; Yang J; Chen D; Ding F; Schmidt OG
    Phys Rev Lett; 2019 Oct; 123(16):160502. PubMed ID: 31702338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.