These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36745573)

  • 1. DNA Origami Fiducial for Accurate 3D Atomic Force Microscopy Imaging.
    Kolbeck PJ; Dass M; Martynenko IV; van Dijk-Moes RJA; Brouwer KJH; van Blaaderen A; Vanderlinden W; Liedl T; Lipfert J
    Nano Lett; 2023 Feb; 23(4):1236-1243. PubMed ID: 36745573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM.
    Endo M; Sugiyama H
    Methods Mol Biol; 2018; 1814():213-224. PubMed ID: 29956235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Assessment of Tip Effects in Single-Molecule High-Speed Atomic Force Microscopy Using DNA Origami Substrates.
    Kielar C; Zhu S; Grundmeier G; Keller A
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14336-14341. PubMed ID: 32485088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Molecule Visualization of B-Z Transition in DNA Origami Using High-Speed AFM.
    Endo M; Sugiyama H
    Methods Mol Biol; 2023; 2651():241-250. PubMed ID: 36892772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Force Microscopy (AFM) Analysis of an Object Larger and Sharper than the AFM Tip.
    Chen Z; Luo J; Doudevski I; Erten S; Kim SH
    Microsc Microanal; 2019 Oct; 25(5):1106-1111. PubMed ID: 31307569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images.
    Matsunaga Y; Fuchigami S; Ogane T; Takada S
    Sci Rep; 2023 Jan; 13(1):129. PubMed ID: 36599879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive-Oxygen-Species-Mediated Surface Oxidation of Single-Molecule DNA Origami by an Atomic Force Microscope Tip-Mounted C
    Ray A; Passiu C; Nasuda M; Ramakrishna SN; Rossi A; Kuzuya A; Spencer ND; Yamakoshi Y
    ACS Nano; 2021 Dec; 15(12):19256-19265. PubMed ID: 34817171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programming DNA origami assembly for shape-resolved nanomechanical imaging labels.
    Chao J; Zhang H; Xing Y; Li Q; Liu H; Wang L; Wang L; Fan C
    Nat Protoc; 2018 Jul; 13(7):1569-1585. PubMed ID: 29988105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AFM-Based Probing of the Flexibility and Surface Attachment of Immobilized DNA Origami.
    Thamm S; Slesiona N; Dathe A; Csáki A; Fritzsche W
    Langmuir; 2018 Dec; 34(49):15093-15098. PubMed ID: 30252490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correcting for AFM tip induced topography convolutions in protein-DNA samples.
    Winzer AT; Kraft C; Bhushan S; Stepanenko V; Tessmer I
    Ultramicroscopy; 2012 Oct; 121():8-15. PubMed ID: 22910234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of atomic force microscopy image by using nanofabricated tip characterizer toward the actual sample surface topography.
    Xu M; Fujita D; Onishi K
    Rev Sci Instrum; 2009 Apr; 80(4):043703. PubMed ID: 19405662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tobacco mosaic virus as an AFM tip calibrator.
    Trinh MH; Odorico M; Bellanger L; Jacquemond M; Parot P; Pellequer JL
    J Mol Recognit; 2011; 24(3):503-10. PubMed ID: 21504029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing tethered targets of a single biomolecular complex with atomic force microscopy.
    Wu N; Wang Q; Zhou X; Jia SS; Fan Y; Hu J; Li B
    J Mol Recognit; 2013 Dec; 26(12):700-4. PubMed ID: 24277616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging DNA Structure by Atomic Force Microscopy.
    Pyne AL; Hoogenboom BW
    Methods Mol Biol; 2016; 1431():47-60. PubMed ID: 27283301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM-based single-molecule observation of the conformational changes of DNA structures.
    Endo M
    Methods; 2019 Oct; 169():3-10. PubMed ID: 30978504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.