These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36745679)

  • 1. Comprehensive structural characterization of the human AAA+ disaggregase CLPB in the apo- and substrate-bound states reveals a unique mode of action driven by oligomerization.
    Wu D; Liu Y; Dai Y; Wang G; Lu G; Chen Y; Li N; Lin J; Gao N
    PLoS Biol; 2023 Feb; 21(2):e3001987. PubMed ID: 36745679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor.
    Deville C; Franke K; Mogk A; Bukau B; Saibil HR
    Cell Rep; 2019 Jun; 27(12):3433-3446.e4. PubMed ID: 31216466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique structural features govern the activity of a human mitochondrial AAA+ disaggregase, Skd3.
    Cupo RR; Rizo AN; Braun GA; Tse E; Chuang E; Gupta K; Southworth DR; Shorter J
    Cell Rep; 2022 Sep; 40(13):111408. PubMed ID: 36170828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skd3 (human ClpB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations.
    Cupo RR; Shorter J
    Elife; 2020 Jun; 9():. PubMed ID: 32573439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic mechanism of the autonomous ClpG disaggregase.
    Katikaridis P; Römling U; Mogk A
    J Biol Chem; 2021; 296():100460. PubMed ID: 33639171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tightly regulated molecular toggle controls AAA+ disaggregase.
    Oguchi Y; Kummer E; Seyffer F; Berynskyy M; Anstett B; Zahn R; Wade RC; Mogk A; Bukau B
    Nat Struct Mol Biol; 2012 Dec; 19(12):1338-46. PubMed ID: 23160353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase.
    Rizo AN; Lin J; Gates SN; Tse E; Bart SM; Castellano LM; DiMaio F; Shorter J; Southworth DR
    Nat Commun; 2019 Jun; 10(1):2393. PubMed ID: 31160557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into structural and functional relationships between LonA proteases and ClpB chaperones.
    Rotanova TV; Andrianova AG; Kudzhaev AM; Li M; Botos I; Wlodawer A; Gustchina A
    FEBS Open Bio; 2019 Sep; 9(9):1536-1551. PubMed ID: 31237118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DnaK chaperone-dependent disaggregation by caseinolytic peptidase B (ClpB) mutants reveals functional overlap in the N-terminal domain and nucleotide-binding domain-1 pore tyrosine.
    Doyle SM; Hoskins JR; Wickner S
    J Biol Chem; 2012 Aug; 287(34):28470-9. PubMed ID: 22745126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity.
    Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B
    J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human mitochondrial AAA+ ATPase SKD3/CLPB assembles into nucleotide-stabilized dodecamers.
    Spaulding Z; Thevarajan I; Schrag LG; Zubcevic L; Zolkiewska A; Zolkiewski M
    Biochem Biophys Res Commun; 2022 Apr; 602():21-26. PubMed ID: 35247700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP hydrolysis-coupled peptide translocation mechanism of
    Yu H; Lupoli TJ; Kovach A; Meng X; Zhao G; Nathan CF; Li H
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9560-E9569. PubMed ID: 30257943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a trap mutant of the AAA+ chaperone ClpB.
    Weibezahn J; Schlieker C; Bukau B; Mogk A
    J Biol Chem; 2003 Aug; 278(35):32608-17. PubMed ID: 12805357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate.
    Fernández-Higuero JA; Aguado A; Perales-Calvo J; Moro F; Muga A
    Sci Rep; 2018 Apr; 8(1):5796. PubMed ID: 29643454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB.
    Nagy M; Wu HC; Liu Z; Kedzierska-Mieszkowska S; Zolkiewski M
    Protein Sci; 2009 Feb; 18(2):287-93. PubMed ID: 19177562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of substrate-mimicking peptides with the AAA+ ATPase ClpB from Escherichia coli.
    Ranaweera CB; Glaza P; Yang T; Zolkiewski M
    Arch Biochem Biophys; 2018 Oct; 655():12-17. PubMed ID: 30092228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClpB chaperone passively threads soluble denatured proteins through its central pore.
    Nakazaki Y; Watanabe YH
    Genes Cells; 2014 Dec; 19(12):891-900. PubMed ID: 25288401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved distal loop residues in the Hsp104 and ClpB middle domain contact nucleotide-binding domain 2 and enable Hsp70-dependent protein disaggregation.
    Desantis ME; Sweeny EA; Snead D; Leung EH; Go MS; Gupta K; Wendler P; Shorter J
    J Biol Chem; 2014 Jan; 289(2):848-67. PubMed ID: 24280225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial and Yeast AAA+ Disaggregases ClpB and Hsp104 Operate through Conserved Mechanism Involving Cooperation with Hsp70.
    Kummer E; Szlachcic A; Franke KB; Ungelenk S; Bukau B; Mogk A
    J Mol Biol; 2016 Oct; 428(21):4378-4391. PubMed ID: 27616763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repurposing p97 inhibitors for chemical modulation of the bacterial ClpB-DnaK bichaperone system.
    Glaza P; Ranaweera CB; Shiva S; Roy A; Geisbrecht BV; Schoenen FJ; Zolkiewski M
    J Biol Chem; 2021; 296():100079. PubMed ID: 33187983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.