These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36745924)

  • 21. Deformable wing kinematics in free-flying hoverflies.
    Walker SM; Thomas AL; Taylor GK
    J R Soc Interface; 2010 Jan; 7(42):131-42. PubMed ID: 19447818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A semi-empirical model of the aerodynamics of manoeuvring insect flight.
    Walker SM; Taylor GK
    J R Soc Interface; 2021 Apr; 18(177):20210103. PubMed ID: 33906387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
    van Veen WG; van Leeuwen JL; Muijres FT
    J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wing flexibility reduces the energetic requirements of insect flight.
    Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M
    Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering.
    Sun M; Lan SL
    J Exp Biol; 2004 May; 207(Pt 11):1887-901. PubMed ID: 15107443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dimensional analysis of spring-wing systems reveals performance metrics for resonant flapping-wing flight.
    Lynch J; Gau J; Sponberg S; Gravish N
    J R Soc Interface; 2021 Feb; 18(175):20200888. PubMed ID: 33593213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.
    Kang CK; Shyy W
    J R Soc Interface; 2014 Dec; 11(101):20140933. PubMed ID: 25297319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional wing structure attenuates aerodynamic efficiency in flapping fly wings.
    Engels T; Wehmann HN; Lehmann FO
    J R Soc Interface; 2020 Mar; 17(164):20190804. PubMed ID: 32156185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of chordwise functionally graded flexural rigidity in flapping wings using a two-dimensional pitch-plunge model.
    Reade J; Jankauski M
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wing and body kinematics of forward flight in drone-flies.
    Meng XG; Sun M
    Bioinspir Biomim; 2016 Aug; 11(5):056002. PubMed ID: 27526336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting power-optimal kinematics of avian wings.
    Parslew B
    J R Soc Interface; 2015 Jan; 12(102):20140953. PubMed ID: 25392398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Operation of the alula as an indicator of gear change in hoverflies.
    Walker SM; Thomas AL; Taylor GK
    J R Soc Interface; 2012 Jun; 9(71):1194-207. PubMed ID: 22072452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
    Li C; Dong H
    Bioinspir Biomim; 2017 Feb; 12(2):026001. PubMed ID: 28059781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elastic deformation and energy loss of flapping fly wings.
    Lehmann FO; Gorb S; Nasir N; Schützner P
    J Exp Biol; 2011 Sep; 214(Pt 17):2949-61. PubMed ID: 21832138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.