These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 36745962)

  • 1. Recent developments in digital light processing 3D-printing techniques for microfluidic analytical devices.
    Amini A; Guijt RM; Themelis T; De Vos J; Eeltink S
    J Chromatogr A; 2023 Mar; 1692():463842. PubMed ID: 36745962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
    Milton LA; Viglione MS; Ong LJY; Nordin GP; Toh YC
    Lab Chip; 2023 Aug; 23(16):3537-3560. PubMed ID: 37476860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications.
    Xu X; Awad A; Robles-Martinez P; Gaisford S; Goyanes A; Basit AW
    J Control Release; 2021 Jan; 329():743-757. PubMed ID: 33031881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices.
    Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP
    Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmaceutical applications and requirements of resins for printing by digital light processing (DLP).
    Uchida DT; Bruschi ML
    Pharm Dev Technol; 2024 Jun; 29(5):445-456. PubMed ID: 38641968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advantages of stereolithographic 3D printing in the fabrication of the Affiblot device for dot-blot assays.
    Novotny J; Svobodova Z; Ilicova M; Hruskova D; Kostalova J; Bilkova Z; Foret F
    Mikrochim Acta; 2024 Jul; 191(8):442. PubMed ID: 38954238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing.
    Pagac M; Hajnys J; Ma QP; Jancar L; Jansa J; Stefek P; Mesicek J
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology.
    Ertugrul I
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32443757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow controllable three-dimensional paper-based microfluidic analytical devices fabricated by 3D printing technology.
    Fu X; Xia B; Ji B; Lei S; Zhou Y
    Anal Chim Acta; 2019 Aug; 1065():64-70. PubMed ID: 31005152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital light processing 3D printing of microfluidic devices targeting high-pressure liquid-phase separations.
    Amini A; Themelis T; Ottevaere H; De Vos J; Eeltink S
    Mikrochim Acta; 2024 Mar; 191(3):171. PubMed ID: 38430344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How 3D printing can boost advances in analytical and bioanalytical chemistry.
    Ambrosi A; Bonanni A
    Mikrochim Acta; 2021 Jul; 188(8):265. PubMed ID: 34287702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital Light Processing Based Three-dimensional Printing for Medical Applications.
    Zhang J; Hu Q; Wang S; Tao J; Gou M
    Int J Bioprint; 2020; 6(1):242. PubMed ID: 32782984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of 3D printing technology applied to paper microfluidics.
    Fu E; Wentland L
    Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.