These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36746301)
21. Modulating the properties of myofibrillar proteins-stabilized high internal phase emulsions using chitosan for enhanced 3D-printed foods. Zhang F; Wang P; Huang M; Xu X Carbohydr Polym; 2024 Jan; 324():121540. PubMed ID: 37985113 [TBL] [Abstract][Full Text] [Related]
22. Molecular structure modification of ovalbumin through controlled glycosylation with dextran for its emulsibility improvement. Zheng Y; Chang Y; Luo B; Teng H; Chen L Int J Biol Macromol; 2022 Jan; 194():1-8. PubMed ID: 34826451 [TBL] [Abstract][Full Text] [Related]
23. The freeze-thaw stability of flavor high internal phase emulsion and its application to flavor preservation and 3D printing. Hu S; Xiao F; Du M; Pan J; Song L; Wu C; Zhu B; Xu X Food Chem X; 2023 Oct; 19():100759. PubMed ID: 37780284 [TBL] [Abstract][Full Text] [Related]
24. Effects of Concentration of Soybean Protein Isolate and Maltose and Oil Phase Volume Fraction on Freeze-Thaw Stability of Pickering Emulsion. Song Z; Yang Y; Chen F; Fan J; Wang B; Bian X; Xu Y; Liu B; Fu Y; Shi Y; Zhang X; Zhang N Foods; 2022 Dec; 11(24):. PubMed ID: 36553760 [TBL] [Abstract][Full Text] [Related]
25. Optimization of enzymatic soy protein isolate-glucosamine conjugates to improve the freeze-thaw stability of emulsion. Li N; Zhang Z; Cui Y; Shi J; Sun X; Liu YA; Wang X; Xu N J Sci Food Agric; 2023 Jan; 103(2):811-819. PubMed ID: 36036167 [TBL] [Abstract][Full Text] [Related]
26. Effect of four plant oils on the stability of high internal phase Pickering emulsions stabilized by ovalbumin-tannic acid complex. Xiong Y; Chen Y; Yi X; Li Z; Luo Y Int J Biol Macromol; 2022 Dec; 222(Pt B):1633-1641. PubMed ID: 36243162 [TBL] [Abstract][Full Text] [Related]
27. Assessing the emulsifying properties of Tenebrio molitor larvae protein preparations: Impact of storage, thermal, and freeze-thaw treatments on o/w emulsion stability. Gkinali AA; Matsakidou A; Paraskevopoulou A Int J Biol Macromol; 2023 Oct; 250():126165. PubMed ID: 37558041 [TBL] [Abstract][Full Text] [Related]
28. Does protein deamidation enhance rice protein concentrate's ability to produce and stabilize high internal phase emulsions? Vidotto DC; Galvão AMMT; Tavares GM; Hubinger MD Food Res Int; 2024 Mar; 179():114012. PubMed ID: 38342536 [TBL] [Abstract][Full Text] [Related]
29. Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels. Zhu Y; McClements DJ; Zhou W; Peng S; Zhou L; Zou L; Liu W Food Chem; 2020 Jan; 303():125401. PubMed ID: 31466031 [TBL] [Abstract][Full Text] [Related]
30. Reversibility of freeze-thaw/re-emulsification on Pickering emulsion stabilized with gliadin/sodium caseinate nanoparticles and konjac glucomannan. Xu W; Ning Y; Sun Y; Sun H; Jia Y; Chai L; Luo D; Shah BR Int J Biol Macromol; 2023 Apr; 233():123653. PubMed ID: 36780967 [TBL] [Abstract][Full Text] [Related]
31. Interfacial crystallized oleogel emulsion with improved freeze-thaw stability and tribological properties: Influence of cooling rate. Liao Z; Wang X; Lu M; Zhong R; Xiao J; Rogers MA; Cao Y; Lan Y Food Chem; 2024 Jul; 445():138704. PubMed ID: 38401308 [TBL] [Abstract][Full Text] [Related]
32. Characteristics of insoluble soybean fiber (ISF) concentrated emulsions: Effects of pretreatment on ISF and freeze-thaw stability of emulsions. Cai Y; Huang L; Zhou F; Zhao Q; Zhao M; Van der Meeren P Food Chem; 2023 Nov; 427():136738. PubMed ID: 37392634 [TBL] [Abstract][Full Text] [Related]
33. Influence of morphology and polymorphic transformation of fat crystals on the freeze-thaw stability of mayonnaise-type oil-in-water emulsions. Ishibashi C; Hondoh H; Ueno S Food Res Int; 2016 Nov; 89(Pt 1):604-613. PubMed ID: 28460956 [TBL] [Abstract][Full Text] [Related]
34. Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance. Huang C; Sun F; Ma X; Gao C; Yang N; Nishinari K Carbohydr Polym; 2022 Jul; 288():119277. PubMed ID: 35450663 [TBL] [Abstract][Full Text] [Related]
35. Formation of Shelf-Stable Pickering High Internal Phase Emulsion Stabilized by Cao Y; Dai Y; Lu X; Li R; Zhou W; Li J; Zheng B Front Nutr; 2021; 8():770218. PubMed ID: 34888338 [TBL] [Abstract][Full Text] [Related]
36. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs). Zhang T; Xu Z; Cai Z; Guo Q Phys Chem Chem Phys; 2015 Jun; 17(24):16033-9. PubMed ID: 26028420 [TBL] [Abstract][Full Text] [Related]
37. Stabilizing effect of silver carp myofibrillar protein modified by high intensity ultrasound on high internal phase emulsions: Protein denaturation, interfacial adsorption and reconfiguration. Hong Z; Kong Y; Guo R; Huang Q Int J Biol Macromol; 2024 Apr; 265(Pt 1):130896. PubMed ID: 38490385 [TBL] [Abstract][Full Text] [Related]
38. Effect of Ultrasonic Treatment on Freeze-thaw Stability of Soy Protein Isolate Gel. Zhou G; Liu J; Wang G; Wang L; Zhang A; Wang Y; Wang X J Oleo Sci; 2019 Nov; 68(11):1113-1123. PubMed ID: 31611517 [TBL] [Abstract][Full Text] [Related]
39. Impact of pH, freeze-thaw and thermal sterilization on physicochemical stability of walnut beverage emulsion. Liu S; Sun C; Xue Y; Gao Y Food Chem; 2016 Apr; 196():475-85. PubMed ID: 26593517 [TBL] [Abstract][Full Text] [Related]
40. High Internal Phase Emulsions Stabilized with Polyphenol-Amyloid Fibril Supramolecules for Encapsulation and Protection of Lutein. Leng X; Cheng S; Wu H; Nian Y; Zeng X; Hu B J Agric Food Chem; 2022 Feb; 70(7):2328-2338. PubMed ID: 35133823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]