These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36746725)
1. Deep-learning measurement of intracerebral haemorrhage with mixed precision training: a coarse-to-fine study. Jiang X; Wang S; Zheng Q Clin Radiol; 2023 Apr; 78(4):e328-e335. PubMed ID: 36746725 [TBL] [Abstract][Full Text] [Related]
2. A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage. Yu N; Yu H; Li H; Ma N; Hu C; Wang J Stroke; 2022 Jan; 53(1):167-176. PubMed ID: 34601899 [TBL] [Abstract][Full Text] [Related]
3. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema. Zhao X; Chen K; Wu G; Zhang G; Zhou X; Lv C; Wu S; Chen Y; Xie G; Yao Z Eur Radiol; 2021 Jul; 31(7):5012-5020. PubMed ID: 33409788 [TBL] [Abstract][Full Text] [Related]
5. Deep learning models for separate segmentations of intracerebral and intraventricular hemorrhage on head CT and segmentation quality assessment. Li Y; Zhang R; Li Y; Zuo X; Wang Q; Zhang S; Huo X; Liu Z; Zhang Q; Liang M Med Phys; 2024 Nov; 51(11):8317-8333. PubMed ID: 39133935 [TBL] [Abstract][Full Text] [Related]
6. Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement. Wang T; Song N; Liu L; Zhu Z; Chen B; Yang W; Chen Z BMC Med Imaging; 2021 Aug; 21(1):125. PubMed ID: 34388981 [TBL] [Abstract][Full Text] [Related]
7. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
8. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation. Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898 [TBL] [Abstract][Full Text] [Related]
9. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches. Zhou X Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of automated segmentation and volumetry of acute intracerebral hemorrhage following minimally invasive surgery using a patch-based convolutional neural network in a small dataset. Elsheikh S; Elbaz A; Rau A; Demerath T; Fung C; Kellner E; Urbach H; Reisert M Neuroradiology; 2024 Apr; 66(4):601-608. PubMed ID: 38367095 [TBL] [Abstract][Full Text] [Related]
11. 3D Deep Neural Network Segmentation of Intracerebral Hemorrhage: Development and Validation for Clinical Trials. Sharrock MF; Mould WA; Ali H; Hildreth M; Awad IA; Hanley DF; Muschelli J Neuroinformatics; 2021 Jul; 19(3):403-415. PubMed ID: 32980970 [TBL] [Abstract][Full Text] [Related]
12. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
13. Ψ-Net: Focusing on the border areas of intracerebral hemorrhage on CT images. Kuang Z; Deng X; Yu L; Wang H; Li T; Wang S Comput Methods Programs Biomed; 2020 Oct; 194():105546. PubMed ID: 32474252 [TBL] [Abstract][Full Text] [Related]
14. CT-based deep learning model for predicting hospital discharge outcome in spontaneous intracerebral hemorrhage. Zhao X; Zhou B; Luo Y; Chen L; Zhu L; Chang S; Fang X; Yao Z Eur Radiol; 2024 Jul; 34(7):4417-4426. PubMed ID: 38127074 [TBL] [Abstract][Full Text] [Related]
15. Multi-scale object equalization learning network for intracerebral hemorrhage region segmentation. Zhang Y; Huang Y; Hu K Neural Netw; 2024 Nov; 179():106507. PubMed ID: 39003984 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of an Automatic Segmentation Algorithm for Quantification of Intracerebral Hemorrhage. Scherer M; Cordes J; Younsi A; Sahin YA; Götz M; Möhlenbruch M; Stock C; Bösel J; Unterberg A; Maier-Hein K; Orakcioglu B Stroke; 2016 Nov; 47(11):2776-2782. PubMed ID: 27703089 [TBL] [Abstract][Full Text] [Related]
17. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT. Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071 [TBL] [Abstract][Full Text] [Related]
18. PSMA-PET improves deep learning-based automated CT kidney segmentation. Leube J; Horn M; Hartrampf PE; Buck AK; Lassmann M; Tran-Gia J Z Med Phys; 2024 May; 34(2):231-241. PubMed ID: 37666698 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based computed tomography image segmentation and volume measurement of intracerebral hemorrhage. Peng Q; Chen X; Zhang C; Li W; Liu J; Shi T; Wu Y; Feng H; Nian Y; Hu R Front Neurosci; 2022; 16():965680. PubMed ID: 36263364 [TBL] [Abstract][Full Text] [Related]
20. U-Net based deep learning bladder segmentation in CT urography. Ma X; Hadjiiski LM; Wei J; Chan HP; Cha KH; Cohan RH; Caoili EM; Samala R; Zhou C; Lu Y Med Phys; 2019 Apr; 46(4):1752-1765. PubMed ID: 30734932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]