BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36746837)

  • 1. Path planning for percutaneous lung biopsy based on the loose-Pareto and adaptive heptagonal optimization method.
    Liu Q; Zhou G; Zhong J; Tang L; Lu Y; Qin J; He L; Zhang J
    Med Biol Eng Comput; 2023 Jun; 61(6):1449-1472. PubMed ID: 36746837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path planning algorithm for percutaneous puncture lung mass biopsy procedure based on the multi-objective constraints and fuzzy optimization.
    Zhang J; Zhang J; Han P; Chen XZ; Zhang Y; Li W; Qin J; He L
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38394681
    [No Abstract]   [Full Text] [Related]  

  • 3. [A method of lung puncture path planning based on multi-level constraint].
    Sun F; Pei H; Yang Y; Fan Q; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Jun; 39(3):462-470. PubMed ID: 35788515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Automatic Needle Puncture Path-Planning Method for Thermal Ablation of Lung Tumors.
    Wang Z; Wu W; Wu S; Zhou Z; Zhang H
    Diagnostics (Basel); 2024 Jan; 14(2):. PubMed ID: 38275462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive method for multicriteria optimization of intensity-modulated proton therapy.
    Kamal-Sayed H; Ma J; Tseung H; Abdel-Rehim A; Herman MG; Beltran CJ
    Med Phys; 2018 Dec; 45(12):5643-5652. PubMed ID: 30332515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesion positioning method of a CT-guided surgical robotic system for minimally invasive percutaneous lung.
    Zhang TF; Fu Z; Wang Y; Shi WY; Chen GB; Fei J
    Int J Med Robot; 2020 Apr; 16(2):e2044. PubMed ID: 31674135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning.
    Zarepisheh M; Long T; Li N; Tian Z; Romeijn HE; Jia X; Jiang SB
    Med Phys; 2014 Jun; 41(6):061711. PubMed ID: 24877806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung nodule pre-diagnosis and insertion path planning for chest CT images.
    Xie RL; Wang Y; Zhao YN; Zhang J; Chen GB; Fei J; Fu Z
    BMC Med Imaging; 2023 Feb; 23(1):22. PubMed ID: 36737717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pareto-based beam orientation optimization method for spot scanning intensity-modulated proton therapy.
    Kamal Sayed H; Herman MG; Beltran CJ
    Med Phys; 2020 Jun; 47(5):2049-2060. PubMed ID: 32077497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Optimization of SBRT Planning for Patients With Early Stage Non-Small Cell Lung Cancer.
    Shang H; Pu Y; Wang Y
    Technol Cancer Res Treat; 2020; 19():1533033820916505. PubMed ID: 32314663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of database quality in knowledge-based treatment planning for prostate cancer.
    Wall PDH; Carver RL; Fontenot JD
    Pract Radiat Oncol; 2018; 8(6):437-444. PubMed ID: 29730280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-stage puncture path planning algorithm of ablation needles for percutaneous radiofrequency ablation of liver tumors.
    Luo M; Jiang H; Shi T
    Comput Biol Med; 2022 Jun; 145():105506. PubMed ID: 35429832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a treatment planning system-assisted large-aperture computed tomography simulator to percutaneous biopsy: initial experience of a radiation therapist.
    Lin X; Ma L; Du K; Hong J; Luo S; Lai Y; Dai Y; Kong X
    J Int Med Res; 2021 Jan; 49(1):300060520983141. PubMed ID: 33472476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light Pareto robust optimization for IMRT treatment planning.
    Ripsman DA; Rahimi F; Abouee-Mehrizi H; Mahmoudzadeh H
    Med Phys; 2023 May; 50(5):2637-2648. PubMed ID: 36786196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-criteria optimization approach for HDR prostate brachytherapy: I. Pareto surface approximation.
    Cui S; Després P; Beaulieu L
    Phys Med Biol; 2018 Oct; 63(20):205004. PubMed ID: 30226472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization.
    Zarepisheh M; Uribe-Sanchez AF; Li N; Jia X; Jiang SB
    Med Phys; 2014 Apr; 41(4):041705. PubMed ID: 24694125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic configuration of the reference point method for fully automated multi-objective treatment planning applied to oropharyngeal cancer.
    van Haveren R; Heijmen BJM; Breedveld S
    Med Phys; 2020 Apr; 47(4):1499-1508. PubMed ID: 32017144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct incorporation of patient-specific efficacy and toxicity estimates in radiation therapy plan optimization.
    Polan DF; Epelman MA; Wu VW; Sun Y; Varsta M; Owen DR; Jarema D; Matrosic CK; Jolly S; Schonewolf CA; Schipper MJ; Matuszak MM
    Med Phys; 2022 Oct; 49(10):6279-6292. PubMed ID: 35994026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach to multiobjective optimization of rotational therapy. II. Pareto optimal surfaces and linear combinations of modulated blocked arcs for a prostate geometry.
    Pardo-Montero J; Fenwick JD
    Med Phys; 2010 Jun; 37(6):2606-16. PubMed ID: 20632572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.
    Fiege J; McCurdy B; Potrebko P; Champion H; Cull A
    Med Phys; 2011 Sep; 38(9):5217-29. PubMed ID: 21978066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.