These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36746861)

  • 1. Environment-oriented disassembly planning for end-of-life vehicle batteries based on an improved northern goshawk optimisation algorithm.
    Zhan C; Zhang X; Tian G; Pham DT; Ivanov M; Aleksandrov A; Fu C; Zhang J; Wu Z
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47956-47971. PubMed ID: 36746861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The end-of-life power battery recycling & remanufacturing center location-adjustment problem considering battery capacity and quantity uncertainty.
    Du Y; Zhou Y; Jia D; Li X
    J Environ Manage; 2024 Apr; 357():120774. PubMed ID: 38569265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid evolutionary algorithm for stochastic multiobjective disassembly line balancing problem in remanufacturing.
    Tian G; Zhang X; Fathollahi-Fard AM; Jiang Z; Zhang C; Yuan G; Pham DT
    Environ Sci Pollut Res Int; 2023 Apr; ():. PubMed ID: 37118384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-objective optimisation for cell-level disassembly of waste power battery modules in human-machine hybrid mode.
    Wu T; Zhang Z; Yin T; Zhang Y
    Waste Manag; 2022 May; 144():513-526. PubMed ID: 35468449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supply chain optimisation for recycling and remanufacturing sustainable management in end-of-life vehicles: A mini-review and classification.
    Yuik CJ; Mat Saman MZ; Ngadiman NHA; Hamzah HS
    Waste Manag Res; 2023 Mar; 41(3):554-565. PubMed ID: 36134680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuzzy risk explicit interval linear programming model for end-of-life vehicle recycling planning in the EU.
    Simic V
    Waste Manag; 2015 Jan; 35():265-82. PubMed ID: 25304165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disassembly sequence planning of waste auto parts.
    Mao J; Hong D; Chen Z; Changhai M; Weiwen L; Wang J
    J Air Waste Manag Assoc; 2021 May; 71(5):607-619. PubMed ID: 33395564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective.
    Nie Y; Wang Y; Li L; Liao H
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles.
    Xiong S; Ji J; Ma X
    Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A heuristic for disassembly planning in remanufacturing system.
    Sung J; Jeong B
    ScientificWorldJournal; 2014; 2014():949527. PubMed ID: 24895679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of end-of-life electric vehicle batteries in China: Future scenarios and economic benefits.
    Jiang S; Zhang L; Hua H; Liu X; Wu H; Yuan Z
    Waste Manag; 2021 Nov; 135():70-78. PubMed ID: 34478950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of end-of-life vehicle recycling: Remanufacturing waste sheet steel into mesh sheet.
    Abdullah ZT
    PLoS One; 2021; 16(12):e0261079. PubMed ID: 34874959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collaborative reverse logistics network for electric vehicle batteries management from sustainable perspective.
    Wenzhu Liao GH; Luo X
    J Environ Manage; 2022 Dec; 324():116352. PubMed ID: 36208516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application and planning of an energy-oriented stochastic disassembly line balancing problem.
    Zhang X; Zhou H; Fu C; Mi M; Zhan C; Pham DT; Fathollahi-Fard AM
    Environ Sci Pollut Res Int; 2023 May; ():1-15. PubMed ID: 37222888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China.
    Jiang S; Hua H; Zhang L; Liu X; Wu H; Yuan Z
    Sci Total Environ; 2022 Mar; 811():152224. PubMed ID: 34896143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Simulated Annealing-Based Hyper-Heuristic Algorithm for Stochastic Parallel Disassembly Line Balancing in Smart Remanufacturing.
    Hu Y; Liu C; Zhang M; Jia Y; Xu Y
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capacitated multi-objective disassembly scheduling with fuzzy processing time via a fruit fly optimization algorithm.
    Yuan G; Yang Y; Tian G; Fathollahi-Fard AM
    Environ Sci Pollut Res Int; 2022 Jan; ():. PubMed ID: 35099698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and optimization for noise-aversion and energy-awareness disassembly sequence planning problems in reverse supply chain.
    Liang P; Fu Y; Ni S; Zheng B
    Environ Sci Pollut Res Int; 2021 May; ():. PubMed ID: 34014476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.