These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 36746940)
1. Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes. Choudhary MNK; Quaid K; Xing X; Schmidt H; Wang T Nat Commun; 2023 Feb; 14(1):634. PubMed ID: 36746940 [TBL] [Abstract][Full Text] [Related]
2. Transposable elements in mammalian chromatin organization. Lawson HA; Liang Y; Wang T Nat Rev Genet; 2023 Oct; 24(10):712-723. PubMed ID: 37286742 [TBL] [Abstract][Full Text] [Related]
3. Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes. Diehl AG; Ouyang N; Boyle AP Nat Commun; 2020 Apr; 11(1):1796. PubMed ID: 32286261 [TBL] [Abstract][Full Text] [Related]
4. Roles of transposable elements in the regulation of mammalian transcription. Fueyo R; Judd J; Feschotte C; Wysocka J Nat Rev Mol Cell Biol; 2022 Jul; 23(7):481-497. PubMed ID: 35228718 [TBL] [Abstract][Full Text] [Related]
5. Transposable elements as genetic accelerators of evolution: contribution to genome size, gene regulatory network rewiring and morphological innovation. Nishihara H Genes Genet Syst; 2020 Jan; 94(6):269-281. PubMed ID: 31932541 [TBL] [Abstract][Full Text] [Related]
6. Jump-starting life: balancing transposable element co-option and genome integrity in the developing mammalian embryo. Oomen ME; Torres-Padilla ME EMBO Rep; 2024 Apr; 25(4):1721-1733. PubMed ID: 38528171 [TBL] [Abstract][Full Text] [Related]
7. Massive contribution of transposable elements to mammalian regulatory sequences. Rayan NA; Del Rosario RCH; Prabhakar S Semin Cell Dev Biol; 2016 Sep; 57():51-56. PubMed ID: 27174439 [TBL] [Abstract][Full Text] [Related]
8. Species-specific chromatin landscape determines how transposable elements shape genome evolution. Huang Y; Shukla H; Lee YCG Elife; 2022 Aug; 11():. PubMed ID: 35997258 [TBL] [Abstract][Full Text] [Related]
9. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells. Glinsky GV Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803 [TBL] [Abstract][Full Text] [Related]
10. TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Hermant C; Torres-Padilla ME Genes Dev; 2021 Jan; 35(1-2):22-39. PubMed ID: 33397727 [TBL] [Abstract][Full Text] [Related]
11. H4K16ac activates the transcription of transposable elements and contributes to their cis-regulatory function. Pal D; Patel M; Boulet F; Sundarraj J; Grant OA; Branco MR; Basu S; Santos SDM; Zabet NR; Scaffidi P; Pradeepa MM Nat Struct Mol Biol; 2023 Jul; 30(7):935-947. PubMed ID: 37308596 [TBL] [Abstract][Full Text] [Related]
12. What Doesn't Kill You Makes You Stronger: Transposons as Dual Players in Chromatin Regulation and Genomic Variation. Percharde M; Sultana T; Ramalho-Santos M Bioessays; 2020 Apr; 42(4):e1900232. PubMed ID: 32053231 [TBL] [Abstract][Full Text] [Related]
13. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Sundaram V; Cheng Y; Ma Z; Li D; Xing X; Edge P; Snyder MP; Wang T Genome Res; 2014 Dec; 24(12):1963-76. PubMed ID: 25319995 [TBL] [Abstract][Full Text] [Related]
14. Transposable elements as a potent source of diverse Sundaram V; Wysocka J Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1795):20190347. PubMed ID: 32075564 [TBL] [Abstract][Full Text] [Related]
15. Mammalian genome evolution as a result of epigenetic regulation of transposable elements. Buckley RM; Adelson DL Biomol Concepts; 2014 Jun; 5(3):183-94. PubMed ID: 25372752 [TBL] [Abstract][Full Text] [Related]
16. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Choudhary MN; Friedman RZ; Wang JT; Jang HS; Zhuo X; Wang T Genome Biol; 2020 Jan; 21(1):16. PubMed ID: 31973766 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the three-dimensional chromatin organization by transposable elements in pig spleen. Li Y; Fan H; Qin W; Wang Y; Chen S; Bao W; Sun MA Comput Struct Biotechnol J; 2023; 21():4580-4588. PubMed ID: 37790243 [TBL] [Abstract][Full Text] [Related]
18. DNA methylation in transposable elements buffers the connection between three-dimensional chromatin organization and gene transcription upon rice genome duplication. Sun Z; Wang Y; Song Z; Zhang H; Wang Y; Liu K; Ma M; Wang P; Fang Y; Cai D; Li G; Fang Y J Adv Res; 2022 Dec; 42():41-53. PubMed ID: 35933090 [TBL] [Abstract][Full Text] [Related]
19. Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? de Souza FS; Franchini LF; Rubinstein M Mol Biol Evol; 2013 Jun; 30(6):1239-51. PubMed ID: 23486611 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Chalopin D; Naville M; Plard F; Galiana D; Volff JN Genome Biol Evol; 2015 Jan; 7(2):567-80. PubMed ID: 25577199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]