These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36746949)
1. High-throughput single-molecule quantification of individual base stacking energies in nucleic acids. Abraham Punnoose J; Thomas KJ; Chandrasekaran AR; Vilcapoma J; Hayden A; Kilpatrick K; Vangaveti S; Chen A; Banco T; Halvorsen K Nat Commun; 2023 Feb; 14(1):631. PubMed ID: 36746949 [TBL] [Abstract][Full Text] [Related]
2. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations? Svozil D; Hobza P; Sponer J J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584 [TBL] [Abstract][Full Text] [Related]
3. Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations. Hobza P; Sponer J J Am Chem Soc; 2002 Oct; 124(39):11802-8. PubMed ID: 12296748 [TBL] [Abstract][Full Text] [Related]
4. Stacking Free Energies of All DNA and RNA Nucleoside Pairs and Dinucleoside-Monophosphates Computed Using Recently Revised AMBER Parameters and Compared with Experiment. Brown RF; Andrews CT; Elcock AH J Chem Theory Comput; 2015 May; 11(5):2315-28. PubMed ID: 26574427 [TBL] [Abstract][Full Text] [Related]
5. Base-pairing properties of O-methylated bases of nucleic acids. Energetic and steric considerations. Pohorille A; Loew GH Biophys Chem; 1985 Jun; 22(1-2):37-51. PubMed ID: 3896331 [TBL] [Abstract][Full Text] [Related]
6. Large-Scale Analysis of 48 DNA and 48 RNA Tetranucleotides Studied by 1 μs Explicit-Solvent Molecular Dynamics Simulations. Schrodt MV; Andrews CT; Elcock AH J Chem Theory Comput; 2015 Dec; 11(12):5906-17. PubMed ID: 26580891 [TBL] [Abstract][Full Text] [Related]
7. Evaluating Geometric Definitions of Stacking for RNA Dinucleoside Monophosphates Using Molecular Mechanics Calculations. Taghavi A; Riveros I; Wales DJ; Yildirim I J Chem Theory Comput; 2022 Jun; 18(6):3637-3653. PubMed ID: 35652685 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs. Burkard ME; Kierzek R; Turner DH J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596 [TBL] [Abstract][Full Text] [Related]
9. Single-molecule analysis of DNA base-stacking energetics using patterned DNA nanostructures. Banerjee A; Anand M; Kalita S; Ganji M Nat Nanotechnol; 2023 Dec; 18(12):1474-1482. PubMed ID: 37591937 [TBL] [Abstract][Full Text] [Related]
10. Aromatic Base Stacking in DNA: From ab initio Calculations to Molecular Dynamics Simulations. Sponer J; Berger I; Spačková N; Leszczynski J; Hobza P J Biomol Struct Dyn; 2000; 17 Suppl 1():1-24. PubMed ID: 22607400 [TBL] [Abstract][Full Text] [Related]
11. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands. Sedova A; Banavali NK Biochemistry; 2017 Mar; 56(10):1426-1443. PubMed ID: 28187685 [TBL] [Abstract][Full Text] [Related]
12. On the stability of nucleic acid structures in solution: enthalpy-entropy compensations, internal rotations and reversibility. Searle MS; Williams DH Nucleic Acids Res; 1993 May; 21(9):2051-6. PubMed ID: 7684832 [TBL] [Abstract][Full Text] [Related]
14. Theoretical Model for Solvent-Induced Base Stacking Interactions in Solvent-Free DNA Simulations. Mak CH J Phys Chem B; 2019 Mar; 123(9):1939-1949. PubMed ID: 30727734 [TBL] [Abstract][Full Text] [Related]
15. Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study. Sponer J; Gabb HA; Leszczynski J; Hobza P Biophys J; 1997 Jul; 73(1):76-87. PubMed ID: 9199773 [TBL] [Abstract][Full Text] [Related]
16. Why are Hoogsteen base pairs energetically disfavored in A-RNA compared to B-DNA? Rangadurai A; Zhou H; Merriman DK; Meiser N; Liu B; Shi H; Szymanski ES; Al-Hashimi HM Nucleic Acids Res; 2018 Nov; 46(20):11099-11114. PubMed ID: 30285154 [TBL] [Abstract][Full Text] [Related]
17. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. Sponer J; Jurecka P; Hobza P J Am Chem Soc; 2004 Aug; 126(32):10142-51. PubMed ID: 15303890 [TBL] [Abstract][Full Text] [Related]
18. Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA. Movileanu L; Benevides JM; Thomas GJ Nucleic Acids Res; 2002 Sep; 30(17):3767-77. PubMed ID: 12202762 [TBL] [Abstract][Full Text] [Related]
19. Contributions of stacking, preorganization, and hydrogen bonding to the thermodynamic stability of duplexes between RNA and 2'-O-methyl RNA with locked nucleic acids. Kierzek E; Pasternak A; Pasternak K; Gdaniec Z; Yildirim I; Turner DH; Kierzek R Biochemistry; 2009 May; 48(20):4377-87. PubMed ID: 19348504 [TBL] [Abstract][Full Text] [Related]
20. Nature and magnitude of aromatic stacking of nucleic acid bases. Sponer J; Riley KE; Hobza P Phys Chem Chem Phys; 2008 May; 10(19):2595-610. PubMed ID: 18464974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]