These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36746999)

  • 1. Comparative proteome analysis of different Saccharomyces cerevisiae strains during growth on sucrose and glucose.
    Soares Rodrigues CI; den Ridder M; Pabst M; Gombert AK; Wahl SA
    Sci Rep; 2023 Feb; 13(1):2126. PubMed ID: 36746999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic growth physiology of Saccharomyces cerevisiae on sucrose is strain-dependent.
    Rodrigues CIS; Wahl A; Gombert AK
    FEMS Yeast Res; 2021 Apr; 21(3):. PubMed ID: 33826723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology.
    Nijkamp JF; van den Broek M; Datema E; de Kok S; Bosman L; Luttik MA; Daran-Lapujade P; Vongsangnak W; Nielsen J; Heijne WH; Klaassen P; Paddon CJ; Platt D; Kötter P; van Ham RC; Reinders MJ; Pronk JT; de Ridder D; Daran JM
    Microb Cell Fact; 2012 Mar; 11():36. PubMed ID: 22448915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications.
    Otero JM; Vongsangnak W; Asadollahi MA; Olivares-Hernandes R; Maury J; Farinelli L; Barlocher L; Osterås M; Schalk M; Clark A; Nielsen J
    BMC Genomics; 2010 Dec; 11():723. PubMed ID: 21176163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations.
    Bracher JM; de Hulster E; Koster CC; van den Broek M; Daran JG; van Maris AJA; Pronk JT
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol.
    Kolkman A; Olsthoorn MM; Heeremans CE; Heck AJ; Slijper M
    Mol Cell Proteomics; 2005 Jan; 4(1):1-11. PubMed ID: 15502163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Laboratory Evolution and Reverse Engineering of Single-Vitamin Prototrophies in Saccharomyces cerevisiae.
    Perli T; Moonen DPI; van den Broek M; Pronk JT; Daran JM
    Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32303542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Saccharomyces cerevisiae for fast vitamin-independent aerobic growth.
    Ehrmann AK; Wronska AK; Perli T; de Hulster EAF; Luttik MAH; van den Broek M; Carqueija Cardoso C; Pronk JT; Daran JM
    Metab Eng; 2024 Mar; 82():201-215. PubMed ID: 38364997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays.
    Daran-Lapujade P; Daran JM; Kötter P; Petit T; Piper MD; Pronk JT
    FEMS Yeast Res; 2003 Dec; 4(3):259-69. PubMed ID: 14654430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D.
    Daran-Lapujade P; Daran JM; Luttik MA; Almering MJ; Pronk JT; Kötter P
    FEMS Yeast Res; 2009 Aug; 9(5):789-92. PubMed ID: 19519766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae.
    Van de Velde S; Thevelein JM
    Eukaryot Cell; 2008 Feb; 7(2):286-93. PubMed ID: 17890371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids.
    Dekker WJC; Wiersma SJ; Bouwknegt J; Mooiman C; Pronk JT
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31425603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D.
    Salazar AN; Gorter de Vries AR; van den Broek M; Wijsman M; de la Torre Cortés P; Brickwedde A; Brouwers N; Daran JG; Abeel T
    FEMS Yeast Res; 2017 Nov; 17(7):. PubMed ID: 28961779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield.
    Basso TO; de Kok S; Dario M; do Espirito-Santo JC; Müller G; Schlölg PS; Silva CP; Tonso A; Daran JM; Gombert AK; van Maris AJ; Pronk JT; Stambuk BU
    Metab Eng; 2011 Nov; 13(6):694-703. PubMed ID: 21963484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications.
    Della-Bianca BE; de Hulster E; Pronk JT; van Maris AJ; Gombert AK
    FEMS Yeast Res; 2014 Dec; 14(8):1196-205. PubMed ID: 25263709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae.
    Klein CJ; Rasmussen JJ; Rønnow B; Olsson L; Nielsen J
    J Biotechnol; 1999 Feb; 68(2-3):197-212. PubMed ID: 10194857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silencing MIG1 in Saccharomyces cerevisiae: effects of antisense MIG1 expression and MIG1 gene disruption.
    Olsson L; Larsen ME; Rønnow B; Mikkelsen JD; Nielsen J
    Appl Environ Microbiol; 1997 Jun; 63(6):2366-71. PubMed ID: 9172357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae.
    Garcia-Albornoz M; Holman SW; Antonisse T; Daran-Lapujade P; Teusink B; Beynon RJ; Hubbard SJ
    Mol Omics; 2020 Feb; 16(1):59-72. PubMed ID: 31868867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.
    Matsushika A; Goshima T; Hoshino T
    Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae.
    Ostergaard S; Walløe KO; Gomes SG; Olsson L; Nielsen J
    FEMS Yeast Res; 2001 Apr; 1(1):47-55. PubMed ID: 12702462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.