These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36747379)
1. Three toes and three modes: Dynamics of terrestrial, suspensory, and vertical locomotion in brown-throated three-toed sloths (Bradypodidae, Xenarthra). Young MW; McKamy AJ; Dickinson E; Yarbro J; Ragupathi A; Guru N; Avey-Arroyo JA; Butcher MT; Granatosky MC J Exp Zool A Ecol Integr Physiol; 2023 May; 339(4):383-397. PubMed ID: 36747379 [TBL] [Abstract][Full Text] [Related]
2. Pump the brakes! The hindlimbs of three-toed sloths decelerate and support suspensory locomotion. McKamy AJ; Young MW; Mossor AM; Young JW; Avey-Arroyo JA; Granatosky MC; Butcher MT J Exp Biol; 2023 Apr; 226(8):. PubMed ID: 36942880 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of horizontal walking and vertical climbing in the Australian green tree frog (Ranoidea caerulea). Young MW; Flaim ND; Yarbro J; Ragupathi A; Guru N; Dickinson E; Granatosky MC J Exp Biol; 2023 Apr; 226(7):. PubMed ID: 36866683 [TBL] [Abstract][Full Text] [Related]
4. Limb kinematics during locomotion in the two-toed sloth (Choloepus didactylus, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus. Nyakatura JA; Petrovitch A; Fischer MS Zoology (Jena); 2010 Aug; 113(4):221-34. PubMed ID: 20637572 [TBL] [Abstract][Full Text] [Related]
5. Testing mechanisms for weight support distribution during inverted quadrupedalism in primates. Dickinson E; Young MW; Granatosky MC J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):699-708. PubMed ID: 35567440 [TBL] [Abstract][Full Text] [Related]
6. Muscle architectural properties indicate a primary role in support for the pelvic limb of three-toed sloths (Bradypus variegatus). Morgan DM; Spainhower KB; Mossor AM; Avey-Arroyo JA; Butcher MT J Anat; 2023 Sep; 243(3):448-466. PubMed ID: 37190673 [TBL] [Abstract][Full Text] [Related]
7. A suspensory way of life: Integrating locomotion, postures, limb movements, and forces in two-toed sloths Choloepus didactylus (Megalonychidae, Folivora, Pilosa). Granatosky MC; Karantanis NE; Rychlik L; Youlatos D J Exp Zool A Ecol Integr Physiol; 2018 Dec; 329(10):570-588. PubMed ID: 30129260 [TBL] [Abstract][Full Text] [Related]
8. Keep calm and hang on: EMG activation in the forelimb musculature of three-toed sloths ( Gorvet MA; Wakeling JM; Morgan DM; Hidalgo Segura D; Avey-Arroyo J; Butcher MT J Exp Biol; 2020 Jul; 223(Pt 14):. PubMed ID: 32527958 [TBL] [Abstract][Full Text] [Related]
9. Gait kinetics of above- and below-branch quadrupedal locomotion in lemurid primates. Granatosky MC; Tripp CH; Schmitt D J Exp Biol; 2016 Jan; 219(Pt 1):53-63. PubMed ID: 26739686 [TBL] [Abstract][Full Text] [Related]
10. Myology of the pelvic limb of the brown-throated three-toed sloth (Bradypus variegatus). Butcher MT; Morgan DM; Spainhower KB; Thomas DR; Chadwell BA; Avey-Arroyo JA; Kennedy SP; Cliffe RN J Anat; 2022 Jun; 240(6):1048-1074. PubMed ID: 35037260 [TBL] [Abstract][Full Text] [Related]
11. Coming to grips with life upside down: how myosin fiber type and metabolic properties of sloth hindlimb muscles contribute to suspensory function. Spainhower KB; Metz AK; Yusuf AS; Johnson LE; Avey-Arroyo JA; Butcher MT J Comp Physiol B; 2021 Jan; 191(1):207-224. PubMed ID: 33211164 [TBL] [Abstract][Full Text] [Related]
12. Humeral cross-sectional shape in suspensory primates and sloths. Patel BA; Ruff CB; Simons EL; Organ JM Anat Rec (Hoboken); 2013 Apr; 296(4):545-56. PubMed ID: 23408647 [TBL] [Abstract][Full Text] [Related]
13. Functional morphology and three-dimensional kinematics of the thoraco-lumbar region of the spine of the two-toed sloth. Nyakatura JA; Fischer MS J Exp Biol; 2010 Dec; 213(Pt 24):4278-90. PubMed ID: 21113010 [TBL] [Abstract][Full Text] [Related]
14. Cheap labor: myosin fiber type expression and enzyme activity in the forelimb musculature of sloths (Pilosa: Xenarthra). Spainhower KB; Cliffe RN; Metz AK; Barkett EM; Kiraly PM; Thomas DR; Kennedy SJ; Avey-Arroyo JA; Butcher MT J Appl Physiol (1985); 2018 Sep; 125(3):799-811. PubMed ID: 29722617 [TBL] [Abstract][Full Text] [Related]
15. The evolution of vertical climbing in primates: evidence from reaction forces. Hanna JB; Granatosky MC; Rana P; Schmitt D J Exp Biol; 2017 Sep; 220(Pt 17):3039-3052. PubMed ID: 28620013 [TBL] [Abstract][Full Text] [Related]
16. The biodynamics of arboreal locomotion: the effects of substrate diameter on locomotor kinetics in the gray short-tailed opossum (Monodelphis domestica). Lammers AR; Biknevicius AR J Exp Biol; 2004 Nov; 207(Pt 24):4325-36. PubMed ID: 15531652 [TBL] [Abstract][Full Text] [Related]
17. Comparison of spatiotemporal gait characteristics between vertical climbing and horizontal walking in primates. Granatosky MC; Schmitt D; Hanna J J Exp Biol; 2019 Jan; 222(Pt 2):. PubMed ID: 30510117 [TBL] [Abstract][Full Text] [Related]
18. Muscular reconstruction and functional morphology of the forelimb of early Miocene sloths (Xenarthra, Folivora) of Patagonia. Toledo N; Bargo MS; Vizcaíno SF Anat Rec (Hoboken); 2013 Feb; 296(2):305-25. PubMed ID: 23193102 [TBL] [Abstract][Full Text] [Related]
19. Skeletal correlates of quadrupedalism and climbing in the anthropoid forelimb: implications for inferring locomotion in Miocene catarrhines. Rein TR; Harrison T; Zollikofer CP J Hum Evol; 2011 Nov; 61(5):564-74. PubMed ID: 21872907 [TBL] [Abstract][Full Text] [Related]
20. Patterns of quadrupedal locomotion in a vertical clinging and leaping primate (Propithecus coquereli) with implications for understanding the functional demands of primate quadrupedal locomotion. Granatosky MC; Tripp CH; Fabre AC; Schmitt D Am J Phys Anthropol; 2016 Aug; 160(4):644-52. PubMed ID: 27062049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]