These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36747557)
1. Public perception on 'healthy ageing' in the past decade: An unsupervised machine learning of 63,809 Twitter posts. Ng QX; Lee DYX; Yau CE; Lim YL; Liew TM Heliyon; 2023 Feb; 9(2):e13118. PubMed ID: 36747557 [TBL] [Abstract][Full Text] [Related]
2. Public sentiment on the global outbreak of monkeypox: an unsupervised machine learning analysis of 352,182 twitter posts. Ng QX; Yau CE; Lim YL; Wong LKT; Liew TM Public Health; 2022 Dec; 213():1-4. PubMed ID: 36308872 [TBL] [Abstract][Full Text] [Related]
3. Examining the Public Messaging on 'Loneliness' over Social Media: An Unsupervised Machine Learning Analysis of Twitter Posts over the Past Decade. Ng QX; Lee DYX; Yau CE; Lim YL; Ng CX; Liew TM Healthcare (Basel); 2023 May; 11(10):. PubMed ID: 37239773 [TBL] [Abstract][Full Text] [Related]
4. Examining the Prevailing Negative Sentiments Surrounding Measles Vaccination: Unsupervised Deep Learning of Twitter Posts from 2017 to 2022. Ng QX; Teo YQJ; Kiew CY; Lim BP; Lim YL; Liew TM Cyberpsychol Behav Soc Netw; 2023 Aug; 26(8):621-630. PubMed ID: 37358808 [TBL] [Abstract][Full Text] [Related]
5. Hype or hope? Ketamine for the treatment of depression: results from the application of deep learning to Twitter posts from 2010 to 2023. Ng QX; Lim YL; Ong C; New S; Fam J; Liew TM Front Psychiatry; 2024; 15():1369727. PubMed ID: 38800065 [TBL] [Abstract][Full Text] [Related]
6. Public perception on active aging after COVID-19: an unsupervised machine learning analysis of 44,343 posts. Chen P; Jin Y; Ma X; Lin Y Front Public Health; 2024; 12():1329704. PubMed ID: 38515596 [TBL] [Abstract][Full Text] [Related]
7. Examining the Prevailing Negative Sentiments Related to COVID-19 Vaccination: Unsupervised Deep Learning of Twitter Posts over a 16 Month Period. Ng QX; Lim SR; Yau CE; Liew TM Vaccines (Basel); 2022 Sep; 10(9):. PubMed ID: 36146535 [TBL] [Abstract][Full Text] [Related]
8. Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach. Metzler H; Baginski H; Niederkrotenthaler T; Garcia D J Med Internet Res; 2022 Aug; 24(8):e34705. PubMed ID: 35976193 [TBL] [Abstract][Full Text] [Related]
9. Examining the Negative Sentiments Related to Influenza Vaccination from 2017 to 2022: An Unsupervised Deep Learning Analysis of 261,613 Twitter Posts. Ng QX; Lee DYX; Ng CX; Yau CE; Lim YL; Liew TM Vaccines (Basel); 2023 May; 11(6):. PubMed ID: 37376407 [TBL] [Abstract][Full Text] [Related]
10. Social Media Monitoring of the COVID-19 Pandemic and Influenza Epidemic With Adaptation for Informal Language in Arabic Twitter Data: Qualitative Study. Alsudias L; Rayson P JMIR Med Inform; 2021 Sep; 9(9):e27670. PubMed ID: 34346892 [TBL] [Abstract][Full Text] [Related]
11. Consumer perceptions of telehealth for mental health or substance abuse: a Twitter-based topic modeling analysis. Baird A; Xia Y; Cheng Y JAMIA Open; 2022 Jul; 5(2):ooac028. PubMed ID: 35495736 [TBL] [Abstract][Full Text] [Related]
12. Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid. Yang YC; Al-Garadi MA; Bremer W; Zhu JM; Grande D; Sarker A J Med Internet Res; 2021 May; 23(5):e26616. PubMed ID: 33938807 [TBL] [Abstract][Full Text] [Related]
13. Characterizing Twitter Discussions About HPV Vaccines Using Topic Modeling and Community Detection. Surian D; Nguyen DQ; Kennedy G; Johnson M; Coiera E; Dunn AG J Med Internet Res; 2016 Aug; 18(8):e232. PubMed ID: 27573910 [TBL] [Abstract][Full Text] [Related]
14. Examining Public Messaging on Influenza Vaccine over Social Media: Unsupervised Deep Learning of 235,261 Twitter Posts from 2017 to 2023. Ng QX; Ng CX; Ong C; Lee DYX; Liew TM Vaccines (Basel); 2023 Sep; 11(10):. PubMed ID: 37896922 [TBL] [Abstract][Full Text] [Related]
15. Examining Public Sentiments and Attitudes Toward COVID-19 Vaccination: Infoveillance Study Using Twitter Posts. Chandrasekaran R; Desai R; Shah H; Kumar V; Moustakas E JMIR Infodemiology; 2022; 2(1):e33909. PubMed ID: 35462735 [TBL] [Abstract][Full Text] [Related]
16. #Globalhealth Twitter Conversations on #Malaria, #HIV, #TB, #NCDS, and #NTDS: a Cross-Sectional Analysis. Fung IC; Jackson AM; Ahweyevu JO; Grizzle JH; Yin J; Tse ZTH; Liang H; Sekandi JN; Fu KW Ann Glob Health; 2017; 83(3-4):682-690. PubMed ID: 29221545 [TBL] [Abstract][Full Text] [Related]
17. Characterizing the Discussion of Antibiotics in the Twittersphere: What is the Bigger Picture? Kendra RL; Karki S; Eickholt JL; Gandy L J Med Internet Res; 2015 Jun; 17(6):e154. PubMed ID: 26091775 [TBL] [Abstract][Full Text] [Related]
18. Detection of Hate Speech in COVID-19-Related Tweets in the Arab Region: Deep Learning and Topic Modeling Approach. Alshalan R; Al-Khalifa H; Alsaeed D; Al-Baity H; Alshalan S J Med Internet Res; 2020 Dec; 22(12):e22609. PubMed ID: 33207310 [TBL] [Abstract][Full Text] [Related]
19. Extracting Multiple Worries From Breast Cancer Patient Blogs Using Multilabel Classification With the Natural Language Processing Model Bidirectional Encoder Representations From Transformers: Infodemiology Study of Blogs. Watanabe T; Yada S; Aramaki E; Yajima H; Kizaki H; Hori S JMIR Cancer; 2022 Jun; 8(2):e37840. PubMed ID: 35657664 [TBL] [Abstract][Full Text] [Related]
20. What Do Autistic People Discuss on Twitter? An Approach Using BERTopic Modelling. Gabarron E; Dorronzoro E; Reichenpfader D; Denecke K Stud Health Technol Inform; 2023 May; 302():403-407. PubMed ID: 37203705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]