These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 36747584)

  • 1. Application of microfluidic chips in the simulation of the urinary system microenvironment.
    Hou C; Gu Y; Yuan W; Zhang W; Xiu X; Lin J; Gao Y; Liu P; Chen X; Song L
    Mater Today Bio; 2023 Apr; 19():100553. PubMed ID: 36747584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Chondrocyte microenvironment and application of microfluidic chips in constructing chondrocyte microenvironment].
    Zhong W; Zhang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jan; 28(1):105-8. PubMed ID: 24693790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases.
    Wang Y; Wang P; Qin J
    Acc Chem Res; 2021 Sep; 54(18):3550-3562. PubMed ID: 34459199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Flow Velocity on Laminar Flow in Microfluidic Chips.
    Wu C; Almuaalemi HYM; Sohan ASMMF; Yin B
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent research advances of the biomimetic tumor microenvironment and regulatory factors on microfluidic devices: A systematic review.
    Xu H; Cheng C; Le W
    Electrophoresis; 2022 Apr; 43(7-8):839-847. PubMed ID: 35179796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologically relevant organs on chips.
    Yum K; Hong SG; Healy KE; Lee LP
    Biotechnol J; 2014 Jan; 9(1):16-27. PubMed ID: 24357624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment.
    Young EW
    Integr Biol (Camb); 2013 Sep; 5(9):1096-109. PubMed ID: 23799587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment and evaluation of on-chip intestinal barrier biosystems based on microfluidic techniques.
    Wang H; Li X; Shi P; You X; Zhao G
    Mater Today Bio; 2024 Jun; 26():101079. PubMed ID: 38774450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
    Mi S; Du Z; Xu Y; Sun W
    J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-on-a-chip: Perfusable vascular incorporation brings new approach to tumor metastasis research and drug development.
    Wang R; Zhang C; Li D; Yao Y
    Front Bioeng Biotechnol; 2022; 10():1057913. PubMed ID: 36483772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of microfluidic technology in reproductive researches].
    Shi Y; Shao X
    Se Pu; 2019 Sep; 37(9):925-931. PubMed ID: 31642295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application and prospect of microfluidic chip in central nervous system diseases].
    Zhao C; Chen F
    Sheng Wu Gong Cheng Xue Bao; 2019 Mar; 35(3):396-403. PubMed ID: 30912348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instantaneous simulation of fluids and particles in complex microfluidic devices.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Applications and Challenges of the Development of
    Johnson A; Reimer S; Childres R; Cupp G; Kohs TCL; McCarty OJT; Kang YA
    Cell Mol Bioeng; 2023 Feb; 16(1):3-21. PubMed ID: 36660587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic-Based 3D Engineered Microvascular Networks and Their Applications in Vascularized Microtumor Models.
    Wang X; Sun Q; Pei J
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Leukocyte Behaviors on Microfluidic Chips.
    Liu Y; Yang Q; Cao L; Xu F
    Adv Healthc Mater; 2019 Feb; 8(4):e1801406. PubMed ID: 30672149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.