These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36747635)

  • 1. Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics.
    Yi X; Zhang L; Friesner RA; McDermott A
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics.
    Yi X; Zhang L; Friesner RA; McDermott A
    J Phys Chem Lett; 2024 Feb; 15(8):2270-2278. PubMed ID: 38381862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures.
    Yi X; Fritzsching KJ; Rogawski R; Xu Y; McDermott AE
    Proc Natl Acad Sci U S A; 2024 Feb; 121(8):e2301053120. PubMed ID: 38346186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures.
    Yi X; Fritzsching KJ; Rogawski R; Xu Y; McDermott AE
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpreting protein structural dynamics from NMR chemical shifts.
    Robustelli P; Stafford KA; Palmer AG
    J Am Chem Soc; 2012 Apr; 134(14):6365-74. PubMed ID: 22381384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example.
    Hong M; Mishanina TV; Cady SD
    J Am Chem Soc; 2009 Jun; 131(22):7806-16. PubMed ID: 19441789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time averaging of NMR chemical shifts in the MLF peptide in the solid state.
    De Gortari I; Portella G; Salvatella X; Bajaj VS; van der Wel PC; Yates JR; Segall MD; Pickard CJ; Payne MC; Vendruscolo M
    J Am Chem Soc; 2010 May; 132(17):5993-6000. PubMed ID: 20387894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles.
    Li DW; Brüschweiler R
    J Biomol NMR; 2012 Nov; 54(3):257-65. PubMed ID: 22972619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions.
    Dračínský M; Möller HM; Exner TE
    J Chem Theory Comput; 2013 Aug; 9(8):3806-15. PubMed ID: 26584127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins.
    Eisenreich W; Kemter K; Bacher A; Mulrooney SB; Williams CH; Müller F
    Eur J Biochem; 2004 Apr; 271(8):1437-52. PubMed ID: 15066170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary structural effects on protein NMR chemical shifts.
    Wang Y
    J Biomol NMR; 2004 Nov; 30(3):233-44. PubMed ID: 15754052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.
    Bratholm LA; Jensen JH
    Chem Sci; 2017 Mar; 8(3):2061-2072. PubMed ID: 28451325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of NMR chemical shifts: Tracking and statistical analysis.
    Trainor K; Palumbo JA; MacKenzie DWS; Meiering EM
    Protein Sci; 2020 Jan; 29(1):306-314. PubMed ID: 31730280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-Dependent Structures of Natural Products Based on the Combined Use of DFT Calculations and
    Mari SH; Varras PC; ; Choudhary IM; Siskos MG; Gerothanassis IP
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31226776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conformational dynamics study of alpha-l-Rhap-(1-->2)[alpha-l-Rhap-(1-->3)]-alpha-l-Rhap-OMe in solution by NMR experiments and molecular simulations.
    Eklund R; Lycknert K; Söderman P; Widmalm G
    J Phys Chem B; 2005 Oct; 109(42):19936-45. PubMed ID: 16853578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformations in Solution and in Solid-State Polymorphs: Correlating Experimental and Calculated Nuclear Magnetic Resonance Chemical Shifts for Tolfenamic Acid.
    Blade H; Blundell CD; Brown SP; Carson J; Dannatt HRW; Hughes LP; Menakath AK
    J Phys Chem A; 2020 Oct; 124(43):8959-8977. PubMed ID: 32946236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the dynamic information content of a protein NMR structure: comparison of a molecular dynamics simulation with the NMR and X-ray structures of Escherichia coli ribonuclease HI.
    Philippopoulos M; Lim C
    Proteins; 1999 Jul; 36(1):87-110. PubMed ID: 10373009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative determination of site-specific conformational distributions in an unfolded protein by solid-state nuclear magnetic resonance.
    Hu KN; Havlin RH; Yau WM; Tycko R
    J Mol Biol; 2009 Oct; 392(4):1055-73. PubMed ID: 19647001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.