BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36748308)

  • 1. Elastically Isotropic Truss-Plate-Hybrid Hierarchical Microlattices with Enhanced Modulus and Strength.
    Wang Y; Xu F; Gao H; Li X
    Small; 2023 May; 19(18):e2206024. PubMed ID: 36748308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Hierarchical Architected Lattices for Enhanced Energy Absorption.
    Al Nashar M; Sutradhar A
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness.
    Tancogne-Dejean T; Diamantopoulou M; Gorji MB; Bonatti C; Mohr D
    Adv Mater; 2018 Nov; 30(45):e1803334. PubMed ID: 30230617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Effect of Lattice Topology on Mechanical Properties of SLS Additively Manufactured Sheet-, Ligament-, and Strut-Based Polymeric Metamaterials.
    Abou-Ali AM; Lee DW; Abu Al-Rub RK
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the Elasticity Modulus of 3D-Printed Octet-Truss Structures for Use in Porous Prosthesis Implants.
    Bagheri A; Buj-Corral I; Ferrer M; Pastor MM; Roure F
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30501122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Response of Carbon Composite Octet Truss Structures Produced via Axial Lattice Extrusion.
    Poddar P; Olles M; Cormier D
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpenetrating Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities.
    Li Z; Li X; Wang X; Wang Z; Zhai W
    ACS Appl Mater Interfaces; 2023 May; 15(20):24868-24879. PubMed ID: 37086187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Properties and Energy Absorption Characteristics of Additively Manufactured Lightweight Novel Re-Entrant Plate-Based Lattice Structures.
    Al Hassanieh S; Alhantoobi A; Khan KA; Khan MA
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Architected Structural Members on the Viscoelastic Response of 3D Printed Simple Cubic Lattice Structures.
    Abusabir A; Khan MA; Asif M; Khan KA
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Energy Absorption Behavior of 3D-Printed Polymeric Octet-Truss Lattice Structures of Varying Strut Length and Radius.
    Bolan M; Dean M; Bardelcik A
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the compression behavior of functionally graded lattice for customized cranial remodeling orthosis.
    Veloso F; Miranda D; Morais P; Torres HR; Oliveira B; Correia-Pinto J; Pinho ACM; Vilaça JL
    J Mech Behav Biomed Mater; 2022 Jun; 130():105191. PubMed ID: 35358940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures.
    Ma Q; Cheng H; Jang KI; Luan H; Hwang KC; Rogers JA; Huang Y; Zhang Y
    J Mech Phys Solids; 2016 May; 90():179-202. PubMed ID: 27087704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing and Pulling on Ropes: Hierarchical Woven Materials.
    Moestopo WP; Mateos AJ; Fuller RM; Greer JR; Portela CM
    Adv Sci (Weinh); 2020 Oct; 7(20):2001271. PubMed ID: 33101856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexural Properties of Periodic Lattice Structured Lightweight Cantilever Beams Fabricated Using Additive Manufacturing: Experimental and Finite Element Methods.
    Nazir A; Gohar A; Lin SC; Jeng JY
    3D Print Addit Manuf; 2023 Dec; 10(6):1381-1393. PubMed ID: 38116218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption.
    Li X; Yu X; Chua JW; Lee HP; Ding J; Zhai W
    Small; 2021 Jun; 17(24):e2100336. PubMed ID: 33984173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive manufacturing of 3D nano-architected metals.
    Vyatskikh A; Delalande S; Kudo A; Zhang X; Portela CM; Greer JR
    Nat Commun; 2018 Feb; 9(1):593. PubMed ID: 29426947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices.
    Dou NG; Jagt RA; Portela CM; Greer JR; Minnich AJ
    Nano Lett; 2018 Aug; 18(8):4755-4761. PubMed ID: 30022671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices.
    Zheng X; Chen TT; Jiang X; Naito M; Watanabe I
    Sci Technol Adv Mater; 2023; 24(1):2157682. PubMed ID: 36620090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereolithography 3D Printed Carbon Microlattices with Hierarchical Porosity for Structural and Functional Applications.
    Kudo A; Kanamaru K; Han J; Tang R; Kisu K; Yoshii T; Orimo SI; Nishihara H; Chen M
    Small; 2023 Nov; 19(47):e2301525. PubMed ID: 37528705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.