These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36748308)

  • 21. Stiff isotropic lattices beyond the Maxwell criterion.
    Chen W; Watts S; Jackson JA; Smith WL; Tortorelli DA; Spadaccini CM
    Sci Adv; 2019 Sep; 5(9):eaaw1937. PubMed ID: 31598550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulated tissue growth in tetragonal lattices with mechanical stiffness tuned for bone tissue engineering.
    Arefin AME; Lahowetz M; Egan PF
    Comput Biol Med; 2021 Nov; 138():104913. PubMed ID: 34619409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Learning Accelerated Design of Mechanically Efficient Architected Materials.
    Lee S; Zhang Z; Gu GX
    ACS Appl Mater Interfaces; 2023 May; 15(18):22543-22552. PubMed ID: 37105969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inverting the structure-property map of truss metamaterials by deep learning.
    Bastek JH; Kumar S; Telgen B; Glaesener RN; Kochmann DM
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34983845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Multi-Cell Hybrid Approach to Elevate the Energy Absorption of Micro-Lattice Materials.
    Xiao L; Xu X; Song W; Hu M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32937910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remodeling of Architected Mesenchymal Microtissues Generated on Mechanical Metamaterials.
    Wang C; Vangelatos Z; Winston T; Sun S; Grigoropoulos CP; Ma Z
    3D Print Addit Manuf; 2022 Dec; 9(6):483-489. PubMed ID: 36660751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon.
    Zhang X; Vyatskikh A; Gao H; Greer JR; Li X
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6665-6672. PubMed ID: 30886098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser powder bed fusion of porous graded structures: A comparison between computational and experimental analysis.
    Ruiz de Galarreta S; Doyle RJ; Jeffers J; Ghouse S
    J Mech Behav Biomed Mater; 2021 Nov; 123():104784. PubMed ID: 34419887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical Properties and In Situ Deformation Imaging of Microlattices Manufactured by Laser Based Powder Bed Fusion.
    Du Plessis A; Kouprianoff DP; Yadroitsava I; Yadroitsev I
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical Properties of Lattice Structures with a Central Cube: Experiments and Simulations.
    Guo S; Ma Y; Liu P; Chen Y
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoupling particle-impact dissipation mechanisms in 3D architected materials.
    Butruille T; Crone JC; Portela CM
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2313962121. PubMed ID: 38306480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic properties of porous microlattices from effective medium to scattering dominated regimes.
    Krödel S; Palermo A; Daraio C
    J Acoust Soc Am; 2018 Jul; 144(1):319. PubMed ID: 30075686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vibration-Based Fatigue Analysis of Octet-Truss Lattice Infill Blades for Utilization in Turbine Rotors.
    Hussain S; Ghopa WAW; Singh SSK; Azman AH; Abdullah S; Harun Z; Hishamuddin H
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints.
    Arabnejad S; Burnett Johnston R; Pura JA; Singh B; Tanzer M; Pasini D
    Acta Biomater; 2016 Jan; 30():345-356. PubMed ID: 26523335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experiment Investigation of the Compression Behaviors of Nickel-Coated Hybrid Lattice Structure with Enhanced Mechanical Properties.
    Geng X; Wang M; Hou B
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of Lattice Structures Based on U* Load Path Analysis.
    Zhao S; Song D; Wu N; Wu F
    3D Print Addit Manuf; 2023 Dec; 10(6):1361-1370. PubMed ID: 38116227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plate-nanolattices at the theoretical limit of stiffness and strength.
    Crook C; Bauer J; Guell Izard A; Santos de Oliveira C; Martins de Souza E Silva J; Berger JB; Valdevit L
    Nat Commun; 2020 Mar; 11(1):1579. PubMed ID: 32221283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Energy Absorption of Additive-Manufactured Ti-6Al-4V Parts via Hybrid Lattice Structures.
    Park SJ; Lee JH; Yang J; Moon SK; Son Y; Park J
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite Element Analysis on Initial Crack Site of Porous Structure Fabricated by Electron Beam Additive Manufacturing.
    Tsai MH; Yang CM; Hung YX; Jheng CY; Chen YJ; Fu HC; Chen IG
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lightweight Potential of Anisotropic Plate Lattice Metamaterials.
    Maier M; Stangl C; Saage H; Huber O
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.