These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 36748852)
1. Cellular metabolism: a link connecting cellular behaviour with the physiochemical properties of biomaterials for bone tissue engineering. Chaudhary S; Ghosal D; Tripathi P; Kumar S Biomater Sci; 2023 Mar; 11(7):2277-2291. PubMed ID: 36748852 [TBL] [Abstract][Full Text] [Related]
3. Designing tailored biomaterial surfaces to direct keratinocyte morphology, attachment, and differentiation. Bush KA; Driscoll PF; Soto ER; Lambert CR; McGimpsey WG; Pins GD J Biomed Mater Res A; 2009 Sep; 90(4):999-1009. PubMed ID: 18655147 [TBL] [Abstract][Full Text] [Related]
4. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Przekora A Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():1036-1051. PubMed ID: 30678895 [TBL] [Abstract][Full Text] [Related]
5. [Advance in research of osteoblast adhesion to bioactive materials]. Niu X; Luo Y; Pan J; Wang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):848-52. PubMed ID: 16156288 [TBL] [Abstract][Full Text] [Related]
6. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Kazimierczak P; Benko A; Nocun M; Przekora A Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360 [TBL] [Abstract][Full Text] [Related]
7. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Wu C; Zhou Y; Fan W; Han P; Chang J; Yuen J; Zhang M; Xiao Y Biomaterials; 2012 Mar; 33(7):2076-85. PubMed ID: 22177618 [TBL] [Abstract][Full Text] [Related]
8. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds. Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495 [TBL] [Abstract][Full Text] [Related]
9. Graphene based scaffolds on bone tissue engineering. Shadjou N; Hasanzadeh M; Khalilzadeh B Bioengineered; 2018 Jan; 9(1):38-47. PubMed ID: 29095664 [TBL] [Abstract][Full Text] [Related]
10. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. Lin YH; Chiu YC; Shen YF; Wu YA; Shie MY J Mater Sci Mater Med; 2017 Dec; 29(1):11. PubMed ID: 29282550 [TBL] [Abstract][Full Text] [Related]
11. Biological responses to physicochemical properties of biomaterial surface. Rahmati M; Silva EA; Reseland JE; A Heyward C; Haugen HJ Chem Soc Rev; 2020 Aug; 49(15):5178-5224. PubMed ID: 32642749 [TBL] [Abstract][Full Text] [Related]
12. Influence of extracellular cues of hydrogel biomaterials on stem cell fate. Barnett H; Shevchuk M; Peppas NA; Caldorera-Moore M J Biomater Sci Polym Ed; 2022 Jul; 33(10):1324-1347. PubMed ID: 35297325 [TBL] [Abstract][Full Text] [Related]
13. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
14. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149 [TBL] [Abstract][Full Text] [Related]
15. Biodegradable and biocompatible graphene-based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials. Mansouri N; Al-Sarawi S; Losic D; Mazumdar J; Clark J; Gronthos S; O'Hare Doig R Biotechnol Bioeng; 2021 Nov; 118(11):4217-4230. PubMed ID: 34264518 [TBL] [Abstract][Full Text] [Related]
16. Hybrid core-shell scaffolds for bone tissue engineering. Kareem MM; Hodgkinson T; Sanchez MS; Dalby MJ; Tanner KE Biomed Mater; 2019 Jan; 14(2):025008. PubMed ID: 30609417 [TBL] [Abstract][Full Text] [Related]
17. Mechanosensitive osteogenesis on native cellulose scaffolds for bone tissue engineering. Leblanc Latour M; Pelling AE J Biomech; 2022 Apr; 135():111030. PubMed ID: 35288315 [TBL] [Abstract][Full Text] [Related]
18. Silk scaffolds in bone tissue engineering: An overview. Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652 [TBL] [Abstract][Full Text] [Related]
19. Osteoblast studied on gelatin based biomaterials in rabbit Bone Bioengineering. Yadav N; Srivastava P Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109892. PubMed ID: 31499962 [TBL] [Abstract][Full Text] [Related]
20. Existing and Novel Biomaterials for Bone Tissue Engineering. Dec P; Modrzejewski A; Pawlik A Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]