These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 36749151)

  • 1. NeuroPpred-SVM: A New Model for Predicting Neuropeptides Based on Embeddings of BERT.
    Liu Y; Wang S; Li X; Liu Y; Zhu X
    J Proteome Res; 2023 Mar; 22(3):718-728. PubMed ID: 36749151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features.
    Zhuang J; Gao W; Su R
    J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iNP_ESM: Neuropeptide Identification Based on Evolutionary Scale Modeling and Unified Representation Embedding Features.
    Li H; Jiang L; Yang K; Shang S; Li M; Lv Z
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. m5CPred-SVM: a novel method for predicting m5C sites of RNA.
    Chen X; Xiong Y; Liu Y; Chen Y; Bi S; Zhu X
    BMC Bioinformatics; 2020 Oct; 21(1):489. PubMed ID: 33126851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a BERT Natural Language Processing Model for Automating CT and MRI Triage and Protocol Selection.
    Yao J; Alabousi A; Mironov O
    Can Assoc Radiol J; 2024 Jun; ():8465371241255895. PubMed ID: 38832645
    [No Abstract]   [Full Text] [Related]  

  • 6. MRM-BERT: a novel deep neural network predictor of multiple RNA modifications by fusing BERT representation and sequence features.
    Wang L; Zhou Y
    RNA Biol; 2024 Jan; 21(1):1-10. PubMed ID: 38357904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSTL-Kace: Prediction of Prokaryotic Lysine Acetylation Sites Based on Multistage Transfer Learning Strategy.
    Wang GA; Yan X; Li X; Liu Y; Xia J; Zhu X
    ACS Omega; 2023 Nov; 8(44):41930-41942. PubMed ID: 37969991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TransEFVP: A Two-Stage Approach for the Prediction of Human Pathogenic Variants Based on Protein Sequence Embedding Fusion.
    Yan Z; Ge F; Liu Y; Zhang Y; Li F; Song J; Yu DJ
    J Chem Inf Model; 2024 Feb; 64(4):1407-1418. PubMed ID: 38334115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of linear B-cell epitopes based on protein sequence features and BERT embeddings.
    Liu F; Yuan C; Chen H; Yang F
    Sci Rep; 2024 Jan; 14(1):2464. PubMed ID: 38291341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-DNA interface hotspots prediction based on fusion features of embeddings of protein language model and handcrafted features.
    Li X; Wang GA; Wei Z; Wang H; Zhu X
    Comput Biol Chem; 2023 Dec; 107():107970. PubMed ID: 37866116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurately identifying hemagglutinin using sequence information and machine learning methods.
    Zou X; Ren L; Cai P; Zhang Y; Ding H; Deng K; Yu X; Lin H; Huang C
    Front Med (Lausanne); 2023; 10():1281880. PubMed ID: 38020152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the BERT model on nucleotide sequences with non-standard pre-training and evaluation of different k-mer embeddings.
    Zhang YZ; Bai Z; Imoto S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37815839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AIPs-SnTCN: Predicting Anti-Inflammatory Peptides Using fastText and Transformer Encoder-Based Hybrid Word Embedding with Self-Normalized Temporal Convolutional Networks.
    Raza A; Uddin J; Almuhaimeed A; Akbar S; Zou Q; Ahmad A
    J Chem Inf Model; 2023 Nov; 63(21):6537-6554. PubMed ID: 37905969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data reduction for SVM training using density-based border identification.
    Shalaby M; Farouk M; Khater HA
    PLoS One; 2024; 19(4):e0300641. PubMed ID: 38568906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A BERT-based approach for identifying anti-inflammatory peptides using sequence information.
    Xu T; Wang Q; Yang Z; Ying J
    Heliyon; 2024 Jun; 10(12):e32951. PubMed ID: 38988537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CWLy-SVM: A support vector machine-based tool for identifying cell wall lytic enzymes.
    Meng C; Guo F; Zou Q
    Comput Biol Chem; 2020 Jun; 87():107304. PubMed ID: 32580129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffold-Hopped Compound Identification by Ligand-Based Approaches with a Prospective Affinity Test.
    Maeda I; Tamura S; Ogura Y; Serizawa T; Shimada T; Kunimoto R; Miyao T
    J Chem Inf Model; 2024 Jul; 64(14):5557-5569. PubMed ID: 38950192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iHBPs-VWDC: variable-length window-based dynamic connectivity approach for identifying hormone-binding proteins.
    Zou H
    J Biomol Struct Dyn; 2023 Nov; ():1-10. PubMed ID: 37978902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obtaining psychological embeddings through joint kernel and metric learning.
    Roads BD; Mozer MC
    Behav Res Methods; 2019 Oct; 51(5):2180-2193. PubMed ID: 31432329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trajectory-BERT: Trajectory Estimation Based on BERT Trajectory Pre-Training Model and Particle Filter Algorithm.
    Wu Y; Yu H; Du J; Ge C
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.