These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 36749308)
21. Understanding the impact of pre-digestion thermal hydrolysis process on PFAS in anaerobically digested biosolids. Alukkal CR; Lee LS; Gonzalez DJ Chemosphere; 2024 Oct; 365():143406. PubMed ID: 39326709 [TBL] [Abstract][Full Text] [Related]
22. Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic - Evaluation of potential accumulation in vegetables after application of biosolids. Semerád J; Hatasová N; Grasserová A; Černá T; Filipová A; Hanč A; Innemanová P; Pivokonský M; Cajthaml T Chemosphere; 2020 Dec; 261():128018. PubMed ID: 33113642 [TBL] [Abstract][Full Text] [Related]
23. Perfluoroalkyl acid transformation and mitigation by nNiFe-activated carbon nanocomposites in steady-state flow column studies. Modiri-Gharehveran M; Choi Y; Zenobio JE; Lee LS J Environ Sci (China); 2023 May; 127():678-687. PubMed ID: 36522096 [TBL] [Abstract][Full Text] [Related]
24. Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment. Dasu K; Xia X; Siriwardena D; Klupinski TP; Seay B J Environ Manage; 2022 Jan; 301():113879. PubMed ID: 34619593 [TBL] [Abstract][Full Text] [Related]
25. Modeling PFAS Fate and Transport in Groundwater, with and Without Precursor Transformation. Gefell MJ; Huang H; Opdyke D; Gustafson K; Vlassopoulos D; McCray JE; Best S; Carey M Ground Water; 2022 Jan; 60(1):6-14. PubMed ID: 34850384 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of per- and polyfluoroalkyl substances (PFAS) released from two Florida landfills based on mass balance analyses. Chen Y; Zhang H; Liu Y; Bowden JA; Townsend TG; Solo-Gabriele HM Waste Manag; 2024 Mar; 175():348-359. PubMed ID: 38252979 [TBL] [Abstract][Full Text] [Related]
28. Comparing occurrence of per- and polyfluoroalkyl substances (PFAS) in municipal biosolids and industrial wastewater sludge: A City of Los Angeles study. Otim O Sci Total Environ; 2024 Dec; 954():176268. PubMed ID: 39278486 [TBL] [Abstract][Full Text] [Related]
29. Per- and polyfluoroalkyl substances (PFASs) in precipitation from mainland China: Contributions of unknown precursors and short-chain (C2C3) perfluoroalkyl carboxylic acids. Chen H; Zhang L; Li M; Yao Y; Zhao Z; Munoz G; Sun H Water Res; 2019 Apr; 153():169-177. PubMed ID: 30711792 [TBL] [Abstract][Full Text] [Related]
30. From Waste Collection Vehicles to Landfills: Indication of Per- and Polyfluoroalkyl Substance (PFAS) Transformation. Liu Y; Robey NM; Bowden JA; Tolaymat TM; da Silva BF; Solo-Gabriele HM; Townsend TG Environ Sci Technol Lett; 2021; 8():66-72. PubMed ID: 37850075 [TBL] [Abstract][Full Text] [Related]
31. Influence of microbial weathering on the partitioning of per- and polyfluoroalkyl substances (PFAS) in biosolids. Lewis AJ; Ebrahimi F; McKenzie ER; Suri R; Sales CM Environ Sci Process Impacts; 2023 Mar; 25(3):415-431. PubMed ID: 36637091 [TBL] [Abstract][Full Text] [Related]
32. Characterization of per- and polyfluoroalkyl substances (PFAS) and other constituents in MSW landfill leachate from Puerto Rico. Robey NM; Liu Y; Crespo-Medina M; Bowden JA; Solo-Gabriele HM; Townsend TG; Tolaymat TM Chemosphere; 2024 Jun; 358():142141. PubMed ID: 38677605 [TBL] [Abstract][Full Text] [Related]
33. Pyrolysis-A tool in the wastewater solids handling portfolio, not a silver bullet: Benefits, drawbacks, and future directions. McNamara P; Liu Z; Tong Y; Santha H; Moss L; Zitomer D Water Environ Res; 2023 May; 95(5):e10863. PubMed ID: 37021664 [TBL] [Abstract][Full Text] [Related]
34. Fate of polyfluoroalkyl phosphate diesters and their metabolites in biosolids-applied soil: biodegradation and plant uptake in greenhouse and field experiments. Lee H; Tevlin AG; Mabury SA; Mabury SA Environ Sci Technol; 2014; 48(1):340-9. PubMed ID: 24308318 [TBL] [Abstract][Full Text] [Related]
35. The Total Mass of Per- and Polyfluoroalkyl Substances (PFASs) in California Cosmetics. Bălan SA; Bruton TA; Harris K; Hayes L; Leonetti CP; Mathrani VC; Noble AE; Phelps DSC Environ Sci Technol; 2024 Jul; 58(27):12101-12112. PubMed ID: 38935436 [TBL] [Abstract][Full Text] [Related]
36. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Lenka SP; Kah M; Padhye LP Water Res; 2021 Jul; 199():117187. PubMed ID: 34010737 [TBL] [Abstract][Full Text] [Related]
38. A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants. Gallen C; Eaglesham G; Drage D; Nguyen TH; Mueller JF Chemosphere; 2018 Oct; 208():975-983. PubMed ID: 30068041 [TBL] [Abstract][Full Text] [Related]
39. Per- and Polyfluoroalkyl Substances (PFAS) in Street Sweepings. Ahmadireskety A; Da Silva BF; Robey NM; Douglas TE; Aufmuth J; Solo-Gabriele HM; Yost RA; Townsend TG; Bowden JA Environ Sci Technol; 2022 May; 56(10):6069-6077. PubMed ID: 34596397 [TBL] [Abstract][Full Text] [Related]
40. Impacts of Environmental and Engineered Processes on the PFAS Fingerprint of Fluorotelomer-Based AFFF. Balgooyen S; Remucal CK Environ Sci Technol; 2023 Jan; 57(1):244-254. PubMed ID: 36573898 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]