These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36749401)
1. Lipase-based MIL-100(Fe) biocomposites as chiral stationary phase for high-efficiency capillary electrochromatographic enantioseparation. Sun G; Choi DM; Xu H; Baeck SH; Row KH; Tang W Mikrochim Acta; 2023 Feb; 190(3):84. PubMed ID: 36749401 [TBL] [Abstract][Full Text] [Related]
2. A lipase-based chiral stationary phase for direct chiral separation in capillary electrochromatography. Li Z; Li Q; Fu Y; Hu C; Liu Y; Li W; Chen Z Talanta; 2021 Oct; 233():122488. PubMed ID: 34215110 [TBL] [Abstract][Full Text] [Related]
3. [Preparation and application of porous organic cage capillary electrochromatographic chiral column]. Jia W; Tang M; Zhang J; Yuan L Se Pu; 2022 Apr; 40(4):391-398. PubMed ID: 35362687 [TBL] [Abstract][Full Text] [Related]
4. In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation. Pan C; Wang W; Zhang H; Xu L; Chen X J Chromatogr A; 2015 Apr; 1388():207-16. PubMed ID: 25725957 [TBL] [Abstract][Full Text] [Related]
5. Homochiral iron-based γ-cyclodextrin metal-organic framework for stereoisomer separation in the open tubular capillary electrochromatography. Wang C; Zhu D; Zhang J; Du Y J Pharm Biomed Anal; 2022 Jun; 215():114777. PubMed ID: 35462287 [TBL] [Abstract][Full Text] [Related]
6. Facile preparation of ethanediamine-β-cyclodextrin modified capillary column for electrochromatographic enantioseparation of Dansyl amino acids. Li Z; Hu C; Liu Y; Li Q; Fu Y; Chen Z J Chromatogr A; 2021 Apr; 1643():462082. PubMed ID: 33780884 [TBL] [Abstract][Full Text] [Related]
7. γ-Cyclodextrin metal-organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Li Z; Mao Z; Zhou W; Chen Z Talanta; 2020 Oct; 218():121160. PubMed ID: 32797914 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of cellulase on monolith supported with Zr(IV)-based metal-organic framework as chiral stationary phase for enantioseparation of five basic drugs in capillary electrochromatography. Ma M; Zhang J; Li P; Du Y; Gan J; Yang J; Zhang L Mikrochim Acta; 2021 May; 188(6):186. PubMed ID: 33978843 [TBL] [Abstract][Full Text] [Related]
9. Capillary electrochromatographic fast enantioseparation based on a chiral metal-organic framework. Fei ZX; Zhang M; Xie SM; Yuan LM Electrophoresis; 2014 Dec; 35(24):3541-8. PubMed ID: 25223618 [TBL] [Abstract][Full Text] [Related]
10. A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive. Gao L; Zhao X; Qin S; Dong Q; Hu X; Chu H Chirality; 2022 Mar; 34(3):537-549. PubMed ID: 34997664 [TBL] [Abstract][Full Text] [Related]
11. One-pot synthesis of a novel chiral Zr-based metal-organic framework for capillary electrochromatographic enantioseparation. Gao L; Hu X; Qin S; Chu H; Tang Y; Li X; Wang B Electrophoresis; 2022 Jun; 43(11):1161-1173. PubMed ID: 35312084 [TBL] [Abstract][Full Text] [Related]
12. Cyclodextrin-NH-MIL-53 open tubular stationary phase for capillary electrochromatography enantioseparation. Zheng X; Wu G; Yang Z; Guo N; Niu B; Chen Q; Sun X J Sep Sci; 2023 May; 46(10):e2200969. PubMed ID: 36932879 [TBL] [Abstract][Full Text] [Related]
13. Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography. Fang LL; Wang P; Wen XL; Guo X; Luo LD; Yu J; Guo XJ Talanta; 2017 May; 167():158-165. PubMed ID: 28340706 [TBL] [Abstract][Full Text] [Related]
14. β-Cyclodextrin covalent organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Gu L; Guan J; Huang Z; Huo H; Shi S; Zhang D; Yan F Electrophoresis; 2022 Jul; 43(13-14):1446-1454. PubMed ID: 35353923 [TBL] [Abstract][Full Text] [Related]
15. Enantioseparation by simultaneous biphasic recognition using mobile phase additive and chiral stationary phase in capillary electrochromatography. Sun G; Tang W; Lu Y; Row KH J Chromatogr A; 2022 Mar; 1666():462856. PubMed ID: 35123168 [TBL] [Abstract][Full Text] [Related]
16. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Kong D; Chen Z Electrophoresis; 2018 Nov; 39(22):2912-2918. PubMed ID: 30194854 [TBL] [Abstract][Full Text] [Related]
17. In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation. Fu Y; Li Z; Li Q; Hu C; Liu Y; Sun W; Chen Z J Chromatogr A; 2021 Jul; 1649():462239. PubMed ID: 34034110 [TBL] [Abstract][Full Text] [Related]
18. An immobilized carboxyl containing metal-organic framework-5 stationary phase for open-tubular capillary electrochromatography. Bao T; Tang P; Mao Z; Chen Z Talanta; 2016 Jul; 154():360-6. PubMed ID: 27154687 [TBL] [Abstract][Full Text] [Related]
19. Preparation and study of a capillary electrochromatographic column prepared by conjugating β-CD COFs and gold-poly glycidyl methacrylate nanoparticles. Long K; Guan J; Yu J; Zhang D; Shi S Mikrochim Acta; 2024 Jul; 191(8):457. PubMed ID: 38980449 [TBL] [Abstract][Full Text] [Related]
20. Preparation of β-cyclodextrin covalent organic framework-immobilized poly(glycidyl methacrylate) nanoparticle-coated open tubular capillary electrochromatography column for chiral separation. Huo H; Guan J; Huang Z; Long K; Zhang D; Shi S; Yan F J Sep Sci; 2023 Jul; 46(14):e2300117. PubMed ID: 37246276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]