These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1576 related articles for article (PubMed ID: 36749620)
1. Explainable Machine Learning Techniques To Predict Amiodarone-Induced Thyroid Dysfunction Risk: Multicenter, Retrospective Study With External Validation. Lu YT; Chao HJ; Chiang YC; Chen HY J Med Internet Res; 2023 Feb; 25():e43734. PubMed ID: 36749620 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study. Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583 [TBL] [Abstract][Full Text] [Related]
3. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
4. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage. Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327 [TBL] [Abstract][Full Text] [Related]
5. Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms. Lo YT; Liao JC; Chen MH; Chang CM; Li CT BMC Med Inform Decis Mak; 2021 Oct; 21(1):288. PubMed ID: 34670553 [TBL] [Abstract][Full Text] [Related]
6. Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study. Peng X; Zhu T; Wang T; Wang F; Li K; Hao X BMC Anesthesiol; 2022 Sep; 22(1):284. PubMed ID: 36088288 [TBL] [Abstract][Full Text] [Related]
7. Predicting Fetal Alcohol Spectrum Disorders Using Machine Learning Techniques: Multisite Retrospective Cohort Study. Oh SS; Kuang I; Jeong H; Song JY; Ren B; Moon JY; Park EC; Kawachi I J Med Internet Res; 2023 Jul; 25():e45041. PubMed ID: 37463016 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of a web-based artificial intelligence prediction model to assess massive intraoperative blood loss for metastatic spinal disease using machine learning techniques. Shi X; Cui Y; Wang S; Pan Y; Wang B; Lei M Spine J; 2024 Jan; 24(1):146-160. PubMed ID: 37704048 [TBL] [Abstract][Full Text] [Related]
9. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
11. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques. Li J; Chen Q; Hu X; Yuan P; Cui L; Tu L; Cui J; Huang J; Jiang T; Ma X; Yao X; Zhou C; Lu H; Xu J Int J Med Inform; 2021 May; 149():104429. PubMed ID: 33647600 [TBL] [Abstract][Full Text] [Related]
12. Comparison and development of machine learning for thalidomide-induced peripheral neuropathy prediction of refractory Crohn's disease in Chinese population. Mao J; Chao K; Jiang FL; Ye XP; Yang T; Li P; Zhu X; Hu PJ; Zhou BJ; Huang M; Gao X; Wang XD World J Gastroenterol; 2023 Jun; 29(24):3855-3870. PubMed ID: 37426324 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning Electronic Health Record Identification of Patients with Rheumatoid Arthritis: Algorithm Pipeline Development and Validation Study. Maarseveen TD; Meinderink T; Reinders MJT; Knitza J; Huizinga TWJ; Kleyer A; Simon D; van den Akker EB; Knevel R JMIR Med Inform; 2020 Nov; 8(11):e23930. PubMed ID: 33252349 [TBL] [Abstract][Full Text] [Related]
14. Development and validation of explainable machine-learning models for carotid atherosclerosis early screening. Yun K; He T; Zhen S; Quan M; Yang X; Man D; Zhang S; Wang W; Han X J Transl Med; 2023 May; 21(1):353. PubMed ID: 37246225 [TBL] [Abstract][Full Text] [Related]
15. Machine learning algorithms to predict colistin-induced nephrotoxicity from electronic health records in patients with multidrug-resistant Gram-negative infection. Chiu LW; Ku YE; Chan FY; Lie WN; Chao HJ; Wang SY; Shen WC; Chen HY Int J Antimicrob Agents; 2024 Jul; 64(1):107175. PubMed ID: 38642812 [TBL] [Abstract][Full Text] [Related]
16. Which supervised machine learning algorithm can best predict achievement of minimum clinically important difference in neck pain after surgery in patients with cervical myelopathy? A QOD study. Park C; Mummaneni PV; Gottfried ON; Shaffrey CI; Tang AJ; Bisson EF; Asher AL; Coric D; Potts EA; Foley KT; Wang MY; Fu KM; Virk MS; Knightly JJ; Meyer S; Park P; Upadhyaya C; Shaffrey ME; Buchholz AL; Tumialán LM; Turner JD; Sherrod BA; Agarwal N; Chou D; Haid RW; Bydon M; Chan AK Neurosurg Focus; 2023 Jun; 54(6):E5. PubMed ID: 37283449 [TBL] [Abstract][Full Text] [Related]
17. Predictive model and risk analysis for peripheral vascular disease in type 2 diabetes mellitus patients using machine learning and shapley additive explanation. Liu L; Bi B; Cao L; Gui M; Ju F Front Endocrinol (Lausanne); 2024; 15():1320335. PubMed ID: 38481447 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of a machine learning pathological diagnosis algorithm into the thyroid ultrasound imaging data improves the diagnosis risk of malignant thyroid nodules. Li W; Hong T; Fang J; Liu W; Liu Y; He C; Li X; Xu C; Wang B; Chen Y; Sun C; Li W; Kang W; Yin C Front Oncol; 2022; 12():968784. PubMed ID: 36568189 [TBL] [Abstract][Full Text] [Related]
19. Artificial intelligence based system for predicting permanent stoma after sphincter saving operations. Kuo CY; Kuo LJ; Lin YK Sci Rep; 2023 Sep; 13(1):16039. PubMed ID: 37749194 [TBL] [Abstract][Full Text] [Related]
20. Combinatorial Use of Machine Learning and Logistic Regression for Predicting Carotid Plaque Risk Among 5.4 Million Adults With Fatty Liver Disease Receiving Health Check-Ups: Population-Based Cross-Sectional Study. Deng Y; Ma Y; Fu J; Wang X; Yu C; Lv J; Man S; Wang B; Li L JMIR Public Health Surveill; 2023 Sep; 9():e47095. PubMed ID: 37676713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]