BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36749640)

  • 1. Integrated carbon nanotube and triazine-based covalent organic framework composites for high capacitance performance.
    Liu L; Cui D; Zhang S; Xie W; Yao C; Xu Y
    Dalton Trans; 2023 Feb; 52(9):2762-2769. PubMed ID: 36749640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triazine covalent organic framework (COF)/θ-Al
    Liu L; Cui D; Zhang S; Xie W; Yao C; Xu N; Xu Y
    Dalton Trans; 2023 May; 52(18):6138-6145. PubMed ID: 37070778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications.
    Kumar Y; Ahmad I; Rawat A; Pandey RK; Mohanty P; Pandey R
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11605-11616. PubMed ID: 38407024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastable Triazine-Based Covalent Organic Framework with an Interlayer Hydrogen Bonding for Supercapacitor Applications.
    Li L; Lu F; Xue R; Ma B; Li Q; Wu N; Liu H; Yao W; Guo H; Yang W
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26355-26363. PubMed ID: 31260241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ce-MOF/COF/carbon nanotube hybrid composite: Construction of efficient electrochemical immune platform for amplifying detection performance of CA125.
    An Y; Dong S; Chen H; Guan L; Huang T
    Bioelectrochemistry; 2022 Oct; 147():108201. PubMed ID: 35809468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-Free Synthesis of Covalent Organic Framework/Graphene Nanohybrids: High-Performance Faradaic Cathodes for Supercapacitors and Hybrid Capacitive Deionization.
    Xu L; Liu Y; Ding Z; Xu X; Liu X; Gong Z; Li J; Lu T; Pan L
    Small; 2024 Mar; 20(12):e2307843. PubMed ID: 37948442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preparation of molecularly imprinted polymers based on covalent organic frameworks and their application to selective recognition of trace norfloxacin in milk].
    Xie Y; Zhang Y; Shi H; Wu Z; Yu X; Zhang C; Feng S
    Se Pu; 2022 Jan; 40(1):1-9. PubMed ID: 34985210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a Few-Layered COF@CNT Composite as an Ultrahigh Rate Cathode for Low-Cost K-Ion Batteries.
    Duan J; Wang W; Zou D; Liu J; Li N; Weng J; Xu LP; Guan Y; Zhang Y; Zhou P
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31234-31244. PubMed ID: 35760804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-synthetic Modification of Covalent Organic Frameworks through in situ Polymerization of Aniline for Enhanced Capacitive Energy Storage.
    Dutta TK; Patra A
    Chem Asian J; 2021 Jan; 16(2):158-164. PubMed ID: 33245204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D hierarchical porous V
    Hu T; Liu Y; Zhang Y; Chen M; Zheng J; Tang J; Meng C
    J Colloid Interface Sci; 2018 Dec; 531():382-393. PubMed ID: 30041115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hollow Microtubular Triazine- and Benzobisoxazole-Based Covalent Organic Framework Presenting Sponge-Like Shells That Functions as a High-Performance Supercapacitor.
    El-Mahdy AFM; Hung YH; Mansoure TH; Yu HH; Chen T; Kuo SW
    Chem Asian J; 2019 May; 14(9):1429-1435. PubMed ID: 30817093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron Highways into Nanochannels of Covalent Organic Frameworks for High Electrical Conductivity and Energy Storage.
    Wu Y; Yan D; Zhang Z; Matsushita MM; Awaga K
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7661-7665. PubMed ID: 30702269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors.
    Yang TL; Chen JY; Kuo SW; Lo CT; El-Mahdy AFM
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Capacitance through Molecular Infiltration of 7,7,8,8-Tetracyanoquinodimethane in Metal-Organic Framework/Covalent Organic Framework Hybrids.
    Peng H; Huang S; Tranca D; Richard F; Baaziz W; Zhuang X; Samorì P; Ciesielski A
    ACS Nano; 2021 Nov; 15(11):18580-18589. PubMed ID: 34766761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode.
    Gao H; Neale AR; Zhu Q; Bahri M; Wang X; Yang H; Xu Y; Clowes R; Browning ND; Little MA; Hardwick LJ; Cooper AI
    J Am Chem Soc; 2022 Jun; 144(21):9434-9442. PubMed ID: 35588159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-functional carbon nanotube encapsulated by covalent organic frameworks for lithium-sulfur chemistry and photothermal electrocatalysis.
    Yu X; Wu Z; Zhao Y; Wang W; Li Y; Sui Z; Xiao J; Tian X; Chen Q
    J Colloid Interface Sci; 2024 May; 662():333-341. PubMed ID: 38354560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Olefin-Linked Covalent Organic Framework as a Flexible Thin-Film Electrode for a High-Performance Micro-Supercapacitor.
    Xu J; He Y; Bi S; Wang M; Yang P; Wu D; Wang J; Zhang F
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):12065-12069. PubMed ID: 31246371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of a MoS
    Chen X; Ding J; Jiang J; Zhuang G; Zhang Z; Yang P
    RSC Adv; 2018 Aug; 8(52):29488-29494. PubMed ID: 35547327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage.
    Li Z; Yang B; Su Y; Wang H; Groeper J
    Nanotechnology; 2016 Jan; 27(2):025401. PubMed ID: 26630480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Dimensional Covalent Organic Framework as High-Performance Cathode Materials for Lithium-Ion Batteries.
    Jia C; Duan A; Liu C; Wang WZ; Gan SX; Qi QY; Li Y; Huang X; Zhao X
    Small; 2023 Jun; 19(24):e2300518. PubMed ID: 36918750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.