These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 36749640)
1. Integrated carbon nanotube and triazine-based covalent organic framework composites for high capacitance performance. Liu L; Cui D; Zhang S; Xie W; Yao C; Xu Y Dalton Trans; 2023 Feb; 52(9):2762-2769. PubMed ID: 36749640 [TBL] [Abstract][Full Text] [Related]
2. Triazine covalent organic framework (COF)/θ-Al Liu L; Cui D; Zhang S; Xie W; Yao C; Xu N; Xu Y Dalton Trans; 2023 May; 52(18):6138-6145. PubMed ID: 37070778 [TBL] [Abstract][Full Text] [Related]
3. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications. Kumar Y; Ahmad I; Rawat A; Pandey RK; Mohanty P; Pandey R ACS Appl Mater Interfaces; 2024 Mar; 16(9):11605-11616. PubMed ID: 38407024 [TBL] [Abstract][Full Text] [Related]
4. Ultrastable Triazine-Based Covalent Organic Framework with an Interlayer Hydrogen Bonding for Supercapacitor Applications. Li L; Lu F; Xue R; Ma B; Li Q; Wu N; Liu H; Yao W; Guo H; Yang W ACS Appl Mater Interfaces; 2019 Jul; 11(29):26355-26363. PubMed ID: 31260241 [TBL] [Abstract][Full Text] [Related]
5. Triazine-Based Large-Sized Single-Crystalline Two-Dimensional Covalent Organic Framework for High-Performance Lithium-Ion Batteries. Hou J; Liu H; Gao M; Pan Q; Zhao Y Angew Chem Int Ed Engl; 2024 Aug; ():e202414566. PubMed ID: 39212155 [TBL] [Abstract][Full Text] [Related]
6. Ce-MOF/COF/carbon nanotube hybrid composite: Construction of efficient electrochemical immune platform for amplifying detection performance of CA125. An Y; Dong S; Chen H; Guan L; Huang T Bioelectrochemistry; 2022 Oct; 147():108201. PubMed ID: 35809468 [TBL] [Abstract][Full Text] [Related]
7. Solvent-Free Synthesis of Covalent Organic Framework/Graphene Nanohybrids: High-Performance Faradaic Cathodes for Supercapacitors and Hybrid Capacitive Deionization. Xu L; Liu Y; Ding Z; Xu X; Liu X; Gong Z; Li J; Lu T; Pan L Small; 2024 Mar; 20(12):e2307843. PubMed ID: 37948442 [TBL] [Abstract][Full Text] [Related]
8. [Preparation of molecularly imprinted polymers based on covalent organic frameworks and their application to selective recognition of trace norfloxacin in milk]. Xie Y; Zhang Y; Shi H; Wu Z; Yu X; Zhang C; Feng S Se Pu; 2022 Jan; 40(1):1-9. PubMed ID: 34985210 [TBL] [Abstract][Full Text] [Related]
9. Construction of a Few-Layered COF@CNT Composite as an Ultrahigh Rate Cathode for Low-Cost K-Ion Batteries. Duan J; Wang W; Zou D; Liu J; Li N; Weng J; Xu LP; Guan Y; Zhang Y; Zhou P ACS Appl Mater Interfaces; 2022 Jul; 14(27):31234-31244. PubMed ID: 35760804 [TBL] [Abstract][Full Text] [Related]
10. Post-synthetic Modification of Covalent Organic Frameworks through in situ Polymerization of Aniline for Enhanced Capacitive Energy Storage. Dutta TK; Patra A Chem Asian J; 2021 Jan; 16(2):158-164. PubMed ID: 33245204 [TBL] [Abstract][Full Text] [Related]
11. 3D hierarchical porous V Hu T; Liu Y; Zhang Y; Chen M; Zheng J; Tang J; Meng C J Colloid Interface Sci; 2018 Dec; 531():382-393. PubMed ID: 30041115 [TBL] [Abstract][Full Text] [Related]
12. A Hollow Microtubular Triazine- and Benzobisoxazole-Based Covalent Organic Framework Presenting Sponge-Like Shells That Functions as a High-Performance Supercapacitor. El-Mahdy AFM; Hung YH; Mansoure TH; Yu HH; Chen T; Kuo SW Chem Asian J; 2019 May; 14(9):1429-1435. PubMed ID: 30817093 [TBL] [Abstract][Full Text] [Related]
13. Electron Highways into Nanochannels of Covalent Organic Frameworks for High Electrical Conductivity and Energy Storage. Wu Y; Yan D; Zhang Z; Matsushita MM; Awaga K ACS Appl Mater Interfaces; 2019 Feb; 11(8):7661-7665. PubMed ID: 30702269 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors. Yang TL; Chen JY; Kuo SW; Lo CT; El-Mahdy AFM Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015687 [TBL] [Abstract][Full Text] [Related]
15. Quantum Capacitance through Molecular Infiltration of 7,7,8,8-Tetracyanoquinodimethane in Metal-Organic Framework/Covalent Organic Framework Hybrids. Peng H; Huang S; Tranca D; Richard F; Baaziz W; Zhuang X; Samorì P; Ciesielski A ACS Nano; 2021 Nov; 15(11):18580-18589. PubMed ID: 34766761 [TBL] [Abstract][Full Text] [Related]
16. Multi-functional carbon nanotube encapsulated by covalent organic frameworks for lithium-sulfur chemistry and photothermal electrocatalysis. Yu X; Wu Z; Zhao Y; Wang W; Li Y; Sui Z; Xiao J; Tian X; Chen Q J Colloid Interface Sci; 2024 May; 662():333-341. PubMed ID: 38354560 [TBL] [Abstract][Full Text] [Related]
17. An Olefin-Linked Covalent Organic Framework as a Flexible Thin-Film Electrode for a High-Performance Micro-Supercapacitor. Xu J; He Y; Bi S; Wang M; Yang P; Wu D; Wang J; Zhang F Angew Chem Int Ed Engl; 2019 Aug; 58(35):12065-12069. PubMed ID: 31246371 [TBL] [Abstract][Full Text] [Related]
18. Preparation of a MoS Chen X; Ding J; Jiang J; Zhuang G; Zhang Z; Yang P RSC Adv; 2018 Aug; 8(52):29488-29494. PubMed ID: 35547327 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage. Li Z; Yang B; Su Y; Wang H; Groeper J Nanotechnology; 2016 Jan; 27(2):025401. PubMed ID: 26630480 [TBL] [Abstract][Full Text] [Related]
20. A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode. Gao H; Neale AR; Zhu Q; Bahri M; Wang X; Yang H; Xu Y; Clowes R; Browning ND; Little MA; Hardwick LJ; Cooper AI J Am Chem Soc; 2022 Jun; 144(21):9434-9442. PubMed ID: 35588159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]