These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36749705)

  • 1. Water Electrolysis toward Elevated Temperature: Advances, Challenges and Frontiers.
    Zhang W; Liu M; Gu X; Shi Y; Deng Z; Cai N
    Chem Rev; 2023 Jun; 123(11):7119-7192. PubMed ID: 36749705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.
    Bi L; Boulfrad S; Traversa E
    Chem Soc Rev; 2014 Dec; 43(24):8255-70. PubMed ID: 25134016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Temperature CO
    Song Y; Zhang X; Xie K; Wang G; Bao X
    Adv Mater; 2019 Dec; 31(50):e1902033. PubMed ID: 31282069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Self-Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton-Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 °C.
    Wu W; Ding H; Zhang Y; Ding Y; Katiyar P; Majumdar PK; He T; Ding D
    Adv Sci (Weinh); 2018 Nov; 5(11):1800360. PubMed ID: 30479914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of high temperature co-electrolysis of H
    Zheng Y; Wang J; Yu B; Zhang W; Chen J; Qiao J; Zhang J
    Chem Soc Rev; 2017 Mar; 46(5):1427-1463. PubMed ID: 28165079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen.
    Hodges A; Hoang AL; Tsekouras G; Wagner K; Lee CY; Swiegers GF; Wallace GG
    Nat Commun; 2022 Mar; 13(1):1304. PubMed ID: 35292657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tri-Doped BaCeO
    Rajendran S; Thangavel NK; Ding H; Ding Y; Ding D; Reddy Arava LM
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38275-38284. PubMed ID: 32786238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in solid oxide cell technology for electrolysis.
    Hauch A; Küngas R; Blennow P; Hansen AB; Hansen JB; Mathiesen BV; Mogensen MB
    Science; 2020 Oct; 370(6513):. PubMed ID: 33033189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO
    Opitz AK; Nenning A; Rameshan C; Kubicek M; Götsch T; Blume R; Hävecker M; Knop-Gericke A; Rupprechter G; Klötzer B; Fleig J
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35847-35860. PubMed ID: 28933825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Design Strategy of Catalysts for Water Electrolysis.
    Zhou B; Gao R; Zou JJ; Yang H
    Small; 2022 Jul; 18(27):e2202336. PubMed ID: 35665595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zirconia Toughened Alumina-Based Separator Membrane for Advanced Alkaline Water Electrolyzer.
    Ali MF; Lee HI; Bernäcker CI; Weißgärber T; Lee S; Kim SK; Cho WC
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments.
    Chatenet M; Pollet BG; Dekel DR; Dionigi F; Deseure J; Millet P; Braatz RD; Bazant MZ; Eikerling M; Staffell I; Balcombe P; Shao-Horn Y; Schäfer H
    Chem Soc Rev; 2022 Jun; 51(11):4583-4762. PubMed ID: 35575644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives on Low-Temperature Electrolysis and Potential for Renewable Hydrogen at Scale.
    Ayers K; Danilovic N; Ouimet R; Carmo M; Pivovar B; Bornstein M
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():219-239. PubMed ID: 31173524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Anode-Supported Cells with Fast Oxygen Release Channels for Efficient and Stable CO
    Li T; Wang T; Wei T; Hu X; Ye Z; Wang Z; Dong D; Chen B; Wang H; Shao Z
    Small; 2021 Feb; 17(6):e2007211. PubMed ID: 33470519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Net-Zero Emissions with Solid Oxide Electrolysis Cells: The Power-to-X Approach.
    Tian Y; Manzotti A; Wang Y; Song Y; Fu XZ; Chi B; Ciucci F
    J Phys Chem Lett; 2023 May; 14(20):4688-4695. PubMed ID: 37171053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydrogen issue.
    Armaroli N; Balzani V
    ChemSusChem; 2011 Jan; 4(1):21-36. PubMed ID: 21226208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen production by traditional and novel alkaline water electrolysis on nickel or iron based electrocatalysts.
    Zhang R; Xie A; Cheng L; Bai Z; Tang Y; Wan P
    Chem Commun (Camb); 2023 Jun; 59(53):8205-8221. PubMed ID: 37293866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing.
    López-Fernández E; Sacedón CG; Gil-Rostra J; Yubero F; González-Elipe AR; de Lucas-Consuegra A
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renewable electricity storage using electrolysis.
    Yan Z; Hitt JL; Turner JA; Mallouk TE
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12558-12563. PubMed ID: 31843917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.