These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36749900)

  • 1. Fall detection from a manual wheelchair: preliminary findings based on accelerometers using machine learning techniques.
    Abou L; Fliflet A; Presti P; Sosnoff JJ; Mahajan HP; Frechette ML; Rice LA
    Assist Technol; 2023 Nov; 35(6):523-531. PubMed ID: 36749900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials.
    Aziz O; Musngi M; Park EJ; Mori G; Robinovitch SN
    Med Biol Eng Comput; 2017 Jan; 55(1):45-55. PubMed ID: 27106749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of Apple Watch fall detection feature among wheelchair users.
    Abou L; Fliflet A; Hawari L; Presti P; Sosnoff JJ; Mahajan HP; Frechette ML; Rice LA
    Assist Technol; 2022 Sep; 34(5):619-625. PubMed ID: 33900885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor.
    Ejupi A; Galang C; Aziz O; Park EJ; Robinovitch S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2150-2153. PubMed ID: 29060322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study of One-Class Classification Algorithms for Wearable Fall Sensors.
    Santoyo-Ramón JA; Casilari E; Cano-García JM
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of wheelchair maneuvers based on noisy inertial sensor data: a preliminary study.
    Fu J; Liu T; Jones M; Qian G; Jan YK
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1731-4. PubMed ID: 25570310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry.
    Nait Aicha A; Englebienne G; van Schooten KS; Pijnappels M; Kröse B
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29786659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triaxial Accelerometer-Based Falls and Activities of Daily Life Detection Using Machine Learning.
    Althobaiti T; Katsigiannis S; Ramzan N
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32640526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets.
    Aziz O; Klenk J; Schwickert L; Chiari L; Becker C; Park EJ; Mori G; Robinovitch SN
    PLoS One; 2017; 12(7):e0180318. PubMed ID: 28678808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?
    Gjoreski M; Gjoreski H; Luštrek M; Gams M
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27258282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a fall detector based on accelerometers: a pilot study.
    Lindemann U; Hock A; Stuber M; Keck W; Becker C
    Med Biol Eng Comput; 2005 Sep; 43(5):548-51. PubMed ID: 16411625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors.
    Debache I; Jeantet L; Chevallier D; Bergouignan A; Sueur C
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach.
    Bourke AK; Klenk J; Schwickert L; Aminian K; Ihlen EA; Mellone S; Helbostad JL; Chiari L; Becker C
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3712-3715. PubMed ID: 28269098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers.
    García-Massó X; Serra-Añó P; Gonzalez LM; Ye-Lin Y; Prats-Boluda G; Garcia-Casado J
    Spinal Cord; 2015 Oct; 53(10):772-7. PubMed ID: 25987002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-Learning-Based Methodology for Estimation of Shoulder Load in Wheelchair-Related Activities Using Wearables.
    Amrein S; Werner C; Arnet U; de Vries WHK
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting falls with wearable sensors using machine learning techniques.
    Özdemir AT; Barshan B
    Sensors (Basel); 2014 Jun; 14(6):10691-708. PubMed ID: 24945676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary Examination of the Accuracy of a Fall Detection Device Embedded into Hearing Instruments.
    Burwinkel JR; Xu B; Crukley J
    J Am Acad Audiol; 2020 Jun; 31(6):393-403. PubMed ID: 31914373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can a Body-Fixed Sensor Reduce Heisenberg's Uncertainty When It Comes to the Evaluation of Mobility? Effects of Aging and Fall Risk on Transitions in Daily Living.
    Iluz T; Weiss A; Gazit E; Tankus A; Brozgol M; Dorfman M; Mirelman A; Giladi N; Hausdorff JM
    J Gerontol A Biol Sci Med Sci; 2016 Nov; 71(11):1459-1465. PubMed ID: 25934996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining novelty detectors to improve accelerometer-based fall detection.
    Medrano C; Igual R; García-Magariño I; Plaza I; Azuara G
    Med Biol Eng Comput; 2017 Oct; 55(10):1849-1858. PubMed ID: 28251444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection.
    Putra IPES; Brusey J; Gaura E; Vesilo R
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29271895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.