These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36749965)

  • 1. Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH)
    Park J; Yoon KY; Kwak MJ; Kang J; Kim S; Chaule S; Ha SJ; Jang JH
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation.
    Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W
    Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition of FeOOH Layer on Ultrathin Hematite Nanoflakes to Promote Photoelectrochemical Water Splitting.
    Zhang W; Zhang Y; Miao X; Zhao L; Zhu C
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sn-Controlled Co-Doped Hematite for Efficient Solar-Assisted Chargeable Zn-Air Batteries.
    Park J; Yoon KY; Kwak MJ; Lee JE; Kang J; Jang JH
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54906-54915. PubMed ID: 34751554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting.
    Li Z; Wu J; Liao L; He X; Huang B; Zhang S; Wei Y; Wang S; Zhou W
    J Colloid Interface Sci; 2022 Nov; 626():879-888. PubMed ID: 35835039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering MoO
    Song Y; Zhang X; Zhang Y; Zhai P; Li Z; Jin D; Cao J; Wang C; Zhang B; Gao J; Sun L; Hou J
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202200946. PubMed ID: 35142021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifunctional citrate-Ni
    Wang P; Li F; Long X; Wang T; Chai H; Yang H; Li S; Ma J; Jin J
    Nanoscale; 2021 Sep; 13(33):14197-14206. PubMed ID: 34477701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual co-catalysts activated hematite nanorods with low turn-on potential and enhanced charge collection for efficient solar water oxidation.
    Maity D; Pal D; Karmakar K; Rakshit R; Khan GG; Mandal K
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35303734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-Vacancy-Dominated Cocatalyst/Hematite Interface for Boosting Solar Water Splitting.
    Wang L; Zhu J; Liu X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22272-22277. PubMed ID: 31244023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.
    Kim do H; Andoshe DM; Shim YS; Moon CW; Sohn W; Choi S; Kim TL; Lee M; Park H; Hong K; Kwon KC; Suh JM; Kim JS; Lee JH; Jang HW
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23793-800. PubMed ID: 27551887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ge-Doped Hematite with FeCoNi-B
    Wang Y; Cui S; Tian Z; Han M; Zhao T; Li W
    Small; 2024 May; ():e2400316. PubMed ID: 38716992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Synthesis of α-Fe
    Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balancing charge recombination and hole transfer rates in hematite photoanodes by modulating the Co
    Xiao J; Jia X; Du B; Zhong Z; Li C; Sun J; Nie Z; Zhang X; Wang B
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):915-924. PubMed ID: 37898075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Surface Passivation and Hole Transport Layer on Hematite Photoanodes Enabling Robust Photoelectrocatalytic Water Oxidation.
    Xie H; Song Y; Jiao Y; Gao L; Shi S; Wang C; Hou J
    ACS Nano; 2024 Feb; ():. PubMed ID: 38343104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting.
    Gao RT; Liu L; Li Y; Yang Y; He J; Liu X; Zhang X; Wang L; Wu L
    Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2300493120. PubMed ID: 37364112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting.
    Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P
    ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CoMoO
    Zhang G; Lu C; Li C; Li S; Zhao X; Nie K; Wang J; Feng K; Zhong J
    Phys Chem Chem Phys; 2023 May; 25(19):13410-13416. PubMed ID: 37161656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green electrodeposition synthesis of NiFe-LDH/MoO
    Kang B; Bilal Hussain M; Cheng X; Peng C; Wang Z
    J Colloid Interface Sci; 2022 Nov; 626():146-155. PubMed ID: 35780548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NiFe-bimetal-organic framework grafting oxygen-vacancy-rich BiVO
    Yang Y; Wan S; Wang R; Ou M; Fan X; Zhong Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):487-495. PubMed ID: 36088694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.